首页> 外文期刊>International journal of comadem >Dynamical Linear Models for Condition Monitoring with Multivariate Sensor Data
【24h】

Dynamical Linear Models for Condition Monitoring with Multivariate Sensor Data

机译:用于多元传感器数据状态监测的动态线性模型

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an application of dynamical linear models for anomaly detection and condition monitoring of ship machinery systems based onmultivariate sensor data. Various model alternatives are specified and fitted to a set of training data before they are applied to a test set. Sequential monitoringbased on statistical tests are applied to detect model breakdown as an indication of deviation from normal conditions. The framework is very flexible andallows for a range of different candidate models to be specified. In this paper, some of the estimated models perform rather poorly, but the best ones do quitewell in flagging anomalies in the data streams. Hence, it is demonstrated that dynamical linear models may be utilized for anomaly detection and conditionmonitoring with multivariate sensor data. However, identification of the best model structure is challenging and requires representative training data andcareful consideration in the model specification.
机译:本文介绍了基于线性变量模型的动态线性模型在船舶机械系统异常检测和状态监测中的应用。在将各种模型替代方案应用于测试集之前,将指定各种模型替代方案并将它们拟合到一组训练数据中。基于统计测试的顺序监视 r n用于检测模型故障,以指示与正常情况的偏离。该框架非常灵活,允许指定一系列不同的候选模型。在本文中,一些估计的模型性能较差,但是最好的模型确实可以很好地标记数据流中的异常。因此,证明了动态线性模型可以用于多变量传感器数据的异常检测和状况监测。但是,确定最佳模型结构具有挑战性,并且需要具有代表性的训练数据,并且在模型规范中需要仔细考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号