首页> 外文期刊>Concurrent engineering: research and applications >An approach to remove duplication records in healthcare dataset based on Mimic Deep Neural Network (MDNN) and Chaotic Whale Optimization (CWO)
【24h】

An approach to remove duplication records in healthcare dataset based on Mimic Deep Neural Network (MDNN) and Chaotic Whale Optimization (CWO)

机译:基于模拟深神经网络(MDNN)和混沌鲸优化的医疗数据集中删除复制记录的方法(CWO)

获取原文
获取原文并翻译 | 示例

摘要

Duplication of data in an application will become an expensive factor. These replication of data need to be checked and if it is needed it has to be removed from the dataset as it occupies huge volume of data in the storage space. The cloud is the main source of data storage and all organizations are already started to move their dataset into the cloud since it is cost effective, storage space, data security and data Privacy. In the healthcare sector, storing the duplicated records leads to wrong prediction. Also uploading same files by many users, data storage demand will be occurred. To address those issues, this paper proposes an Optimal Removal of Deduplication (ORD) in heart disease data using hybrid trust based neural network algorithm. In ORD scheme, the Chaotic Whale Optimization (CWO) algorithm is used for trust computation of data using multiple decision metrics. The computed trust values and the nature of the data's are sequentially applied to the training process by the Mimic Deep Neural Network (MDNN). It classify the data is a duplicate or not. Hence the duplicates files are identified and they were removed from the data storage. Finally, the simulation evaluates to examine the proposed MDNN based model and simulation results show the effectiveness of ORD scheme in terms of data duplication removal. From the simulation result it is found that the model's accuracy, sensitivity and specificity was good.
机译:应用程序中的数据复制将成为昂贵的因素。需要检查这些数据的复制,如果需要从数据集中删除它,因为它占据存储空间中大量数据。云是数据存储的主要来源,所有组织都已开始将其数据集移动到云中,因为它是具有成本效益,存储空间,数据安全和数据隐私。在医疗保健部门,存储重复的记录会导致错误的预测。还通过许多用户上传相同的文件,将发生数据存储需求。为了解决这些问题,本文采用混合信基基本网络算法,最佳地清除心脏病数据中的重复数据删除(ORD)。在ord方案中,混沌鲸级优化(CWO)算法用于使用多个决定度量的数据信任计算。计算的信任值和数据的性质顺序地应用于模拟深神经网络(MDNN)的培训过程。它分类数据是重复的。因此,识别了重复的文件,并从数据存储中删除它们。最后,仿真评估了检查所提出的基于MDNN的模型和仿真结果,表明了在数据复制删除方面的ord方案的有效性。从模拟结果来看,模型的准确性,敏感性和特异性都很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号