首页> 外文期刊>Journal of Real-Time Image Processing >A novel PCA-whale optimization-based deep neural network model for classification of tomato plant diseases using GPU
【24h】

A novel PCA-whale optimization-based deep neural network model for classification of tomato plant diseases using GPU

机译:一种新型PCA鲸优化基于GPU分类的基于PCA鲸优化的深神经网络模型

获取原文
获取原文并翻译 | 示例

摘要

The human population is growing at a very rapid scale. With this progressive growth, it is extremely important to ensure that healthy food is available for the survival of the inhabitants of this planet. Also, the economy of developing countries is highly dependent on agricultural production. The overall economic balance gets affected if there is a variance in the demand and supply of food or agricultural products. Diseases in plants are a great threat to the yield of the crops thereby causing famines and economy slow down. Our present study focuses on applying machine learning model for classifying tomato disease image dataset to proactively take necessary steps to combat such agricultural crisis. In this work, the dataset is collected from publicly available plant-village dataset. The significant features are extracted from the dataset using the hybrid-principal component analysis-Whale optimization algorithm. Further the extracted data are fed into a deep neural network for classification of tomato diseases. The proposed model is then evaluated with the classical machine learning techniques to establish the superiority in terms of accuracy and loss rate metrics.
机译:人口以非常快速的规模增长。通过这种渐进的增长,确保健康食品可用于本球居民的生存是非常重要的。此外,发展中国家的经济高度依赖于农业生产。如果食物或农产品的需求和供应方差,总体经济平衡受到影响。植物的疾病对庄稼的产量产生了巨大的威胁,从而导致饥荒和经济减缓。我们现在的研究重点是应用机器学习模型来分类番茄疾病图像数据集,主动采取必要的步骤来打击这种农业危机。在这项工作中,数据集从公开的植物村数据集收集。使用混合 - 主成分分析 - 鲸鲸优化算法从数据集中提取了重要特征。此外,提取的数据被送入深度神经网络以进行番茄疾病的分类。然后,通过经典的机器学习技术评估所提出的模型,以在准确度和损失率指标方面建立优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号