首页> 外文期刊>Concurrency and computation: practice and experience >A variant of teaching-learning-based optimization and its application for minimizing the cost ofWorkflow Execution in the Cloud Computing
【24h】

A variant of teaching-learning-based optimization and its application for minimizing the cost ofWorkflow Execution in the Cloud Computing

机译:基于教学的优化的变体及其应用,从而最大限度地减少云计算中的Workwlow执行成本

获取原文
获取原文并翻译 | 示例

摘要

Teaching learning-based optimization (TLBO) was proposed by Rao to solve optimization problems. It is based on the theory of teaching-learning mechanism. Although it performs well in unimodal problems yet its performance is not good in multimodal problems. To further improve this algorithm's performance and make it suitable for both unimodal problems and multimodal problems, we made some major changes in the theory and the algorithm's operators. The proposed algorithm is able to capture diverse optimal solutions in less number of iterations and is very good for solving multimodal problems. This newly created variant of TLBO is named generalized TLBO (GTLBO). The performance of GTLBO is tested on CEC-06, 2019 benchmark functions and other 15 classical benchmark functions, and it is found that the proposed algorithm is performing better comparatively. Then it is simulated for solving the workflow scheduling problem in CloudSim. Standard scientific workflow applications as Montage, Epigenomics, Sipht, and a sample workflow are used as dataset to test algorithms' performance in cloud environments. Our proposed approach, GTLBO, provides the proper distribution of workloads and offers minimal execution-cost for the workflow applications. Results reflect the supremacy of the proposed algorithm GTLBO comparatively.
机译:RAO提出了基于学习的学习优化(TLBO)来解决优化问题。它基于教学机制理论。虽然它在单峰问题中表现良好,但其性能在多模式问题中并不良好。为了进一步提高这种算法的性能并使其适用于单峰问题和多模式问题,我们对理论和算法的运营商进行了一些重大变化。所提出的算法能够在较少数量的迭代中捕获不同的最佳解决方案,并且对于解决多式化问题非常有利。此新创建的TLBO变体命名为广义TLBO(GTLBO)。 GTLBO的性能在CEC-06,2019基准功能和其他15个典型基准函数上进行测试,并且发现该算法正在更好地执行。然后模拟了解决CloudSim中的工作流程调度问题。标准科学工作流应用作为蒙太奇,表观统计学,SIPHT和示例工作流用作数据集以测试云环境中的算法的性能。我们所提出的方法GTLBO,提供了工作负载的适当分配,并为工作流程应用提供最小的执行成本。结果反映了所提出的算法GTLBO比较的至高无上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号