首页> 外文期刊>Concurrency and computation: practice and experience >A comparative analysis between late fusion of features approach and ensemble of multiple classifiers approach for image classification
【24h】

A comparative analysis between late fusion of features approach and ensemble of multiple classifiers approach for image classification

机译:具有多种分类机分类方法的特征方法的晚期融合与图像分类方法的比较分析

获取原文
获取原文并翻译 | 示例

摘要

In recent times the late fusion of features approach for high-level features extracted by multiple deep convolutional neural networks (DCNNs) has proven to be very effective in the computer vision field, especially for object classification problems. Pretrained DCNNs DenseNet-121 and ResNet-18 are retrained, keeping the number of output nodes equal to the number of classes present in the dataset. The last fully connected layers of these networks thereby get adapted to transform the high-level features to a low-dimensional feature map. Then these maps are fused to improve the performance of the model. On the other hand, an ensemble of multiple classifiers reduces the overfitting problem by combining multiple models prediction matrices. In this work, the prediction matrices of two Logsoftmax multiclass classifiers are combined. The feature maps for these two classifiers are extracted using pretrained DenseNet and ResNet. This study compares the late fusion of high-level features approach and ensemble of multiple classifiers approach for object classification problems. Experimentation has been carried out on two benchmark datasets, such as CIFAR-10 and CIFAR-100, and it achieves 96.48% and 83.33% of test accuracy for ensemble of multiple classifiers and the late feature fusion approach. The proposed method has been compared with other deep architectures and datasets.
机译:最近,由多个深卷积神经网络(DCNNS)提取的高级功能的特征方法的晚期融合已经证明在计算机视野中非常有效,特别是对于对象分类问题。雷则雷丁DCNNS DENNET-121和RESET-18被再培训,保持输出节点的数量等于数据集中存在的类数。这些网络的最后一个完全连接的层,从而适应将高级功能转换为低维特征图。然后融合这些地图以提高模型的性能。另一方面,通过组合多模型预测矩阵来减少多个分类器的集合减少了过度拟合问题。在这项工作中,组合了两个logsoftmax多字母分类器的预测矩阵。使用掠夺性DENENET和RESET提取这两个分类器的特征映射。本研究比较了高级别特征方法的后期融合和多种分类器方法的组合,用于对象分类问题。实验已经在两个基准数据集中进行,例如CiFar-10和CiFar-100,它实现了96.48%和83.33%的测试精度,用于多分类器的集合和后期特征融合方法。已经将所提出的方法与其他深度架构和数据集进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号