首页> 外文期刊>Concurrency, practice and experience >Improved region convolutional neural network for ship detection in multiresolution synthetic aperture radar images
【24h】

Improved region convolutional neural network for ship detection in multiresolution synthetic aperture radar images

机译:改进的区域卷积神经网络,用于多分辨率合成孔径雷达图像中的船舶检测

获取原文
获取原文并翻译 | 示例

摘要

Effectively obtaining the location and direction of the ship target is an important prerequisite for maritime traffic management and marine accident rescue. Thanks to the rapid development of the target detection methods based on deep learning, this article proposed a ship target detection method for multiresolution synthetic aperture radar (SAR) images based on improved region convolution neural network (R-CNN). According to the characteristics of ship target in the SAR images, we make several improvements such as enlarging the input, proposal optimization, database target categorization, and weight balance on the basis of the standard Faster R-CNN. The experimental results proved that the proposed method can detect target effectively and precisely in complicated scenes of multiresolution SAR images, such as in-shore and dense targets. It has a good potential in practical application.
机译:有效地获得船舶目标的位置和方向是海上交通管理和海洋事故救援的重要前提。由于基于深度学习的目标检测方法的快速发展,本文提出了一种基于改进区域卷积神经网络(R-CNN)的多分辨率合成孔径雷达(SAR)图像的船舶目标检测方法。根据SAR图像中的船舶目标的特点,我们在标准R-CNN的基础上进行了若干改进,如扩大输入,提案优化,数据库目标分类和重量平衡。实验结果证明,该方法可以在多分辨率SAR图像的复杂场景中有效且精确地检测目标,例如岸上和致密的目标。它在实际应用中具有良好的潜力。

著录项

  • 来源
    《Concurrency, practice and experience》 |2020年第22期|e5820.1-e5820.10|共10页
  • 作者单位

    Hunan Univ Humanities Sci & Technol Sch Informat Loudi Peoples R China|Loudi Vocat & Tech Coll Off Acad Affairs Loudi Peoples R China|Beijing Univ Chem Technol Dept Phys & Elect Beijing Peoples R China;

    Hunan Univ Humanities Sci & Technol Sch Informat Loudi Peoples R China;

    Hunan Univ Humanities Sci & Technol Sch Informat Loudi Peoples R China;

    Hunan Univ Humanities Sci & Technol Sch Informat Loudi Peoples R China;

    Beijing Univ Chem Technol Dept Phys & Elect Beijing Peoples R China;

    Beijing Univ Chem Technol Dept Phys & Elect Beijing Peoples R China;

    Beijing Univ Chem Technol Dept Phys & Elect Beijing Peoples R China;

    Beijing Univ Chem Technol Dept Phys & Elect Beijing Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    convolutional neural network; Faster region CNN; ship detection; synthetic aperture radar;

    机译:卷积神经网络;更快的区域CNN;船舶检测;合成孔径雷达;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号