首页> 外文期刊>Journal of ambient intelligence and humanized computing >A novel synthetic aperture radar image change detection system using radial basis function-based deep convolutional neural network
【24h】

A novel synthetic aperture radar image change detection system using radial basis function-based deep convolutional neural network

机译:一种新型合成孔径雷达图像改变检测系统,基于径向基于函数的深卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Today, the automatic change detection and also classification as of the Synthetic Aperture Radar (SAR) images remain a hard process. In the existing research, the availability of Speckle Noise (SN), high time-consumption, and low accuracy are the chief issues. To resolve such issues, this paper proposed a novel SAR image change detection system utilizing a Radial Basis Function-based Deep Convolutional Neural Network (RBF-DCNN). The proposed methodology comprises six phases, namely, pre-processing, obtaining difference image, pixel-level image fusion, Feature Extraction (FE), Feature Selection (FS), and also change detection (CD) utilizing the classifier. Initially, the noise is eliminated as of the input, SAR image 1 and SAR image 2, utilizing the NLMSTAF approach. Subsequently, the difference image is attained by utilizing a Log-ratio operator (LRO) and Gauss-LRO, and the attained difference image is then fused. Next, the LTrP, WST, edge, and MSER features are extracted from the fused image. As of those features that were extracted, the necessary features are selected utilizing the Hybrid GWO-GA algorithm. The features (selected) are finally inputted to the RBF-DCNN classifier for detecting the changes in an image. Experimental outcomes established that the proposed work renders better performance on considering the existing system.
机译:如今,自动变化检测和作为合成孔径雷达(SAR)图像的分类仍然是一个艰难的过程。在现有的研究中,散斑噪声(SN)的可用性,高度消耗和低精度是主要问题。为了解决这些问题,本文提出了一种新的SAR图像改变检测系统,利用基于径向基础函数的深卷积神经网络(RBF-DCNN)。所提出的方法包括六个阶段,即预处理,获得差异图像,像素级图像融合,特征提取(FE),特征选择(FS)以及利用分类器的改变检测(CD)。最初,利用NLMSTAF方法消除噪声作为输入,SAR图像1和SAR图像2。随后,通过利用记录比率运算符(LRO)和高斯-LRO来实现差异图像,然后融合获得的差异图像。接下来,从融合图像中提取LTRP,WST,EDGE和MSER功能。从提取的那些特征中,利用混合GWO-GA算法选择必要的特征。最终将特征(选择)输入到RBF-DCNN分类器,用于检测图像中的变化。实验结果确定,拟议的工作在考虑现有系统时更好的性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号