首页> 外文期刊>Concurrency, practice and experience >Statistical inference for a hybrid systemmodel with incomplete observed data under adaptive progressive hybrid censoring
【24h】

Statistical inference for a hybrid systemmodel with incomplete observed data under adaptive progressive hybrid censoring

机译:具有不完全观察到的自适应渐进式混合审查下的杂交Systemodel的统计推断

获取原文
获取原文并翻译 | 示例

摘要

In this article, the statistical inference of a hybrid system with incomplete observed data is studied based on the adaptive type-II progressive hybrid censored samples. It is assumed that the lifetime of the component in hybrid systems follows an identical Weibull distribution. The maximum likelihood estimates of the unknown parameters and reliability function are obtained by using the fixed-point iteration method. Under general entropy loss function, the Bayesian estimates and the highest posterior density credible intervals of the unknown parameters and reliability function are derived using Markov Chain Monte Carlo method. In addition, the approximate confidence intervals and Bootstrap confidence intervals are constructed. Finally, Monte Carlo simulation study is carried out to illustrate the performances of two different point estimates and different confidence intervals.
机译:在本文中,基于自适应类型-II逐行杂交缩醛样品研究了具有不完整的数据的混合系统的统计推断。假设混合动力系统中的组件的寿命遵循相同的Weibull分布。通过使用固定点迭代方法获得未知参数和可靠性函数的最大似然估计。在一般熵损失功能下,使用Markov链蒙特卡罗方法导出未知参数和可靠性函数的贝叶斯估计和最高的后密度可靠间隔。另外,构建近似置信区间和自举置信区间。最后,进行了蒙特卡罗模拟研究,以说明两种不同点估计和不同置信区间的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号