首页> 外文期刊>Concurrency and computation: practice and experience >Sentiment classification of micro-blog comments based on Randomforest algorithm
【24h】

Sentiment classification of micro-blog comments based on Randomforest algorithm

机译:基于随机速率算法的微博评论的情感分类

获取原文
获取原文并翻译 | 示例

摘要

Sentiment classificationofMicro-blogcommentsaims to distinguish consumers' attitudes towarda certain brand or an event. A great number of research studies related to sentiment analysishave been conducted based on machine learning methods, such as Support Vector Machine andNaive Bayes, to build the classifier, and some other research studies tried to build one based onemotional thesaurus. However, the rate of accuracy is yet to improve. In order to improve theaccuracy rate further, this thesis bases on the Randomforest algorithm to construct an emotionaltendency classifier to help the mobile phone service providers to further understand consumers'attitudes toward their brand. TheRandomforest algorithm is a bagging algorithm of the ensemblelearning with some weak classifiers,which works verywell in anti-noise and reducing the overfittingproblem. Finally, a classifier with an 83% accuracy rate for sentiment classification ofmobilephone brands on Micro-blog comments was built based on Randomforest by using R languagesoftware.
机译:情绪分类文件博士 - 博客协议,区分消费者对的态度某个品牌或活动。大量与情感分析相关的研究研究已根据机器学习方法进行,如支持向量机和天真的贝父,建造分类器,以及一些其他研究研究试图基于情绪词库。但是,准确度尚未改善。为了改善准确性率进一步,本文基于随机的算法构建情感倾向于帮助移动电话服务提供商进一步了解消费者的趋势对他们的品牌态度。 TherAnneMorest算法是集合的堆垛机用一些弱分类器学习,效果非常合理,抗噪音并减少过度装备问题。最后,一个分类器,具有83%的感知分类率为mobile通过使用R语言基于随机博物馆建立了微博的电话品牌软件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号