首页> 外文期刊>Concurrency, practice and experience >Autotuning of configuration for program execution in GPUs
【24h】

Autotuning of configuration for program execution in GPUs

机译:自动调整配置以在GPU中执行程序

获取原文
获取原文并翻译 | 示例

摘要

Graphics Processing Units (GPUs) are used as accelerators for improving performance while executing highly data parallel applications. The GPUs are characterized by a number of Streaming Multiprocessors (SM) and a large number of cores within each SM. In addition to this, a hierarchy of memories with different latencies and sizes is present in the GPUs. The program execution in GPUs is thus dependent on a number of parameter values, both at compile time and runtime. To obtain the optimal performance with these GPU resources, a large parameter space is to be explored, and this leads to a number of unproductive program executions. To alleviate this difficulty, machine learning-based autotuning systems are proposed to predict the right configuration using a limited set of compile-time parameters. In this paper, we propose a two-stage machine learning-based autotuning framework using an expanded set of attributes. The important parameters such as block size, occupancy, eligible warps, and execution time are predicted. The mean relative error in prediction of different parameters ranges from of 16% to 6.5%. Dimensionality reduction for the features set reduces the features by up to 50% with further increase in prediction accuracy.
机译:图形处理单元(GPU)用作加速器,可在执行高数据并行应用程序时提高性能。 GPU的特点是具有多个流式多处理器(SM)和每个SM中的大量内核。除此之外,GPU中还存在具有不同延迟和大小的存储器层次结构。因此,GPU中的程序执行取决于编译时和运行时的许多参数值。为了利用这些GPU资源获得最佳性能,需要探索较大的参数空间,这会导致许多无效的程序执行。为了减轻这一困难,提出了一种基于机器学习的自动调整系统,以使用一组有限的编译时参数来预测正确的配置。在本文中,我们提出了一个使用扩展属性集的两阶段基于机器学习的自动调整框架。可以预测重要的参数,例如块大小,占用率,合格的翘曲和执行时间。预测不同参数时的平均相对误差为16%至6.5%。特征集的降维可将特征减少多达50%,并进一步提高预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号