首页> 外文期刊>Concurrency, practice and experience >Bulk execution of the dynamic programming for the optimal polygon triangulation problem on the GPU
【24h】

Bulk execution of the dynamic programming for the optimal polygon triangulation problem on the GPU

机译:在GPU上批量执行动态编程以实现最佳多边形三角剖分问题

获取原文
获取原文并翻译 | 示例

摘要

The bulk execution is to execute some computation for many different inputs in turn or at the same time. The main contribution of this paper is to propose a parallel processing technique for the bulk execution of the dynamic programming using the GPU (Graphics Processing Unit). Especially, we focus on the optimal polygon triangulation problem for a lot of polygons.We consider programming issues of theGPUarchitecture such as coalescedmemoryaccess of the globalmemory, warp divergence avoidance, and reduction of CUDA kernel calls. In the GPU implementation, we propose two thread assignment methods that efficiently perform the parallel execution with a lot of threads on thousands of cores in the GPU. The experimental results show that our GPU implementation onNVIDIA TITANV attains a speed-up factor of up to 106.05 and 26.78 over the single-thread and 8-thread CPU implementations on Intel Core i7- 6700K CPU, respectively.
机译:批量执行是针对多个不同的输入依次或同时执行一些计算。本文的主要贡献是,提出了一种并行处理技术,用于使用GPU(图形处理单元)批量执行动态编程。尤其是,我们专注于许多多边形的最佳多边形三角剖分问题。我们考虑了GPU体系结构的编程问题,例如全局内存的合并内存访问,避免翘曲发散和减少CUDA内核调用。在GPU实现中,我们提出了两种线程分配方法,这些方法可以有效地执行GPU上数千个内核上的许多线程的并行执行。实验结果表明,与在Intel Core i7-6700K CPU上的单线程和8线程CPU实施相比,我们在NVIDIA TITANV上的GPU实施分别达到了106.05和26.78的加速因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号