首页> 外文期刊>Concurrency and computation: practice and experience >New approach to allocation planning of many-task workflows on clouds
【24h】

New approach to allocation planning of many-task workflows on clouds

机译:云上多任务工作流分配计划的新方法

获取原文
获取原文并翻译 | 示例

摘要

Experience has shown that a priori created static resource allocation plans are vulnerable to runtime deviations and hence often become uneconomic or highly exceed a predefined soft deadline. The assumption of constant task execution times during allocation planning is even more unlikely in a cloud environment where virtualized resources vary in performance. Revising the initially created resource allocation plan at runtime allows the scheduler to react on deviations between planning and execution. Such an adaptive rescheduling of a many-task application workflow is only feasible, when the planning time can be handled efficiently at runtime. In this paper, we present the static low-complexity resource allocation planning algorithm (LCP) applicable to efficiently schedule many-task scientific application workflows on cloud resources of different capabilities. The benefits of the presented algorithm are benchmarked against alternative approaches. The benchmark results show that LCP is not only able to compete against higher complexity algorithms in terms of planned costs and planned makespan but also outperforms them significantly by magnitudes of 2 to 160 in terms of required planning time. Hence, LCP is superior in terms of practical usability where low planning time is essential such as in our targeted online rescheduling scenario.
机译:经验表明,先验创建的静态资源分配计划容易受到运行时偏差的影响,因此经常变得不经济或严重超出预定义的软期限。在虚拟化资源的性能变化的云环境中,在分配计划期间假设恒定的任务执行时间的可能性更低。在运行时修改最初创建的资源分配计划,使调度程序可以对计划和执行之间的偏差做出反应。仅当可以在运行时有效地处理计划时间时,这种多任务应用程序工作流的自适应重新计划才可行。在本文中,我们提出了一种静态的低复杂度资源分配规划算法(LCP),该算法可用于在不同功能的云资源上高效地调度多任务科学应用工作流程。所提出算法的优势是针对替代方法的。基准测试结果表明,LCP不仅能够在计划成本和计划工期方面与更高复杂度的算法竞争,而且在所需计划时间方面的性能也要比它们高出2到160个数量级。因此,LCP在实际的可用性方面是优越的,在这种情况下,计划时间很短,例如在我们针对性的在线重新安排方案中,这是必不可少的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号