首页> 外文期刊>Concurrency and computation: practice and experience >A hybrid interpretable credit card users default prediction model based on RIPPER
【24h】

A hybrid interpretable credit card users default prediction model based on RIPPER

机译:基于RIPPER的混合可解释信用卡用户默认预测模型

获取原文
获取原文并翻译 | 示例

摘要

With the vigorous development of the financial sector, financial risks are showing a tendencytoward diversification, particularly regarding the customer credit risk of commercial banks.Therefore, the customer's credit risk is being considered by financial institutions, and a creditevaluatingmodel has emerged as a result. Currently, research has concentrated on enhancing theprecision of the model, ignoring the interpretability,which makes it difficult to apply in the industry.Compared to precision, studies related to the interpretable model are limited. In our previouswork, we did not consider model operation time and stability. Therefore, this study proposes ahybrid model based on the RIPPER algorithm. First, according to the characteristics of credit carddata sets, targeted special data pretreatment methods are proposed. Next, the RELIEF methodfor feature selection removes the redundant features and further improves the interpretability ofthemodel. Then, to address the problem of the imbalanced distribution of credit card data sets, asynthetic minority class sampling algorithm is used to equalize the samples. Finally, default creditcard users are predicted by taking advantage of the rules generated by the RIPPER algorithm.To test the performance of the model, we used Taiwanese credit card customer data for empiricalresearch.We considered model accuracy and interpretability when comparing the proposedSPR-RIPPERmodel with the existingmainstreammodels. The results of the experiments indicatethat the proposed model achieves acceptable results. This study demonstrates that the proposedcredit card user default predictionmodel, SPR-RIPPER, has practical application value.
机译:随着金融业的蓬勃发展,金融风险呈多样化趋势,尤其是商业银行的客户信用风险。 r n因此,金融机构正在考虑客户的信用风险,信贷结果出现了 r nevaluating模型。当前,研究集中在提高模型的精度上,而忽略了可解释性,这使其难以在行业中应用。 r n与精度相比,与可解释模型相关的研究有限。在先前的工作中,我们没有考虑模型的运行时间和稳定性。因此,本研究提出了一种基于RIPPER算法的混合模型。首先,针对信用卡 r n数据集的特点,提出了针对性的特殊数据预处理方法。接下来,用于特征选择的RELIEF方法 r n删除了多余的特征,并进一步提高了模型的可解释性。然后,为了解决信用卡数据集分布不平衡的问题,使用 r 综合少数类采样算法对样本进行均衡。最后,利用RIPPER算法生成的规则来预测默认的信用卡用户。 r n为了测试模型的性能,我们使用台湾信用卡客户数据进行了实证研究 r n比较拟议的 r nSPR-RIPPER模型与现有主流模型时,模型的准确性和可解释性。实验结果表明,所提出的模型取得了可接受的结果。这项研究表明,提出的 r n信用卡用户默认预测模型SPR-RIPPER具有实际应用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号