首页> 外文期刊>Concurrency and Computation >Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms
【24h】

Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms

机译:通过约束多目标优化进行肽鉴定:基于帕累托的遗传算法

获取原文
获取原文并翻译 | 示例

摘要

Automatic peptide identification from collision-induced dissociation tandem mass spectrometry data using optimization techniques is made difficult by large plateaus in the fitness landscapes of scoring functions, by the fuzzy nature of constraints from noisy data and by the existence of diverse but equally justifiable probabilistic models of peak matching. Here, two different scoring functions are combined into a parallel multi-objective optimization framework. It is shown how multi-objective optimization can be used to empirically test for independence between distinct scoring functions. The loss of selection pressure during the evolution of a population of putative peptide sequences by a Pareto-driven genetic algorithm is addressed by alternating between two definitions of fitness according to a numerical threshold.
机译:由于评分功能的适用范围较大,高原地区,噪声数据约束的模糊性质以及存在多种但同样合理的概率模型,使得使用优化技术从碰撞诱导的解离串联质谱数据自动识别肽变得困难。峰值匹配。在这里,两个不同的评分函数被组合成一个并行的多目标优化框架。它显示了如何使用多目标优化来凭经验测试不同得分函数之间的独立性。通过帕累托驱动的遗传算法在推定的肽序列的进化过程中选择压力的损失可以通过根据数值阈值在两个适应度定义之间交替来解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号