首页> 外文期刊>Concurrency and Computation >Efficient truthful mechanisms for the single-source shortest paths tree problem
【24h】

Efficient truthful mechanisms for the single-source shortest paths tree problem

机译:单源最短路径树问题的有效真实机制

获取原文
获取原文并翻译 | 示例

摘要

Let a communication network be modeled by an undirected graph G = (V, E) of n nodes and m edges, and assume that edges are controlled by selfish agents, which privately hold the length of each owned edge. In this paper we analyze the problem of designing a truthful mechanism for computing one of the most popular network topologies, i.e. the single-source shortest paths tree. More precisely, we study several realistic scenarios, in which each agent can own either a single edge or multiple edges of G. In particular, for the single-edge scenario, we show that in the utilitarian case the problem can be efficiently solved in O(mn log α (m, n)) time, while in a meaningful non-utilitarian case, namely that in which agents' valuation functions depend only on the edge lengths, it can be solved in O(m + n log n) time. On the other hand, for the multiple-edge scenario, in the utilitarian case we show an O(mn + n~2 log n) time truthful mechanism, while in the same non-utilitarian case we provide an n-approximate truthful mechanism which can be implemented in O(mn α (m, n)) time. We also show that in the special case in which, for every agent, the owned edges are all incident to the same node, then this latter mechanism has an almost optimal O(m α (m, n)) runtime.
机译:让通信网络由n个节点和m个边的无向图G =(V,E)建模,并假定边由自私的代理控制,这些代理私下保存每个拥有的边的长度。在本文中,我们分析了设计真实机制以计算最流行的网络拓扑之一(即单源最短路径树)的问题。更准确地说,我们研究了几种现实情况,其中每个主体可以拥有G的单个边或多个边。特别是,对于单边情况,我们表明在功利主义的情况下,问题可以在O中有效解决。 (mn logα(m,n))时间,而在有意义的非功利性情况下,即代理商的评估函数仅取决于边长的情况下,可以在O(m + n log n)时间内求解。另一方面,对于多边情形,在功利主义的情况下,我们展示了O(mn + n〜2 log n)时间真实机制,而在同一非功利主义的情况下,我们提供了n逼近真实机制,可以在O(mnα(m,n))时间内实现。我们还表明,在特殊情况下,对于每个代理,拥有的边缘都入射到同一节点,则后一种机制具有几乎最佳的O(mα(m,n))运行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号