首页> 外文期刊>Concurrency, practice and experience >Scalable parallel regridding algorithms for block-structured adaptive mesh refinement
【24h】

Scalable parallel regridding algorithms for block-structured adaptive mesh refinement

机译:用于块结构自适应网格细化的可扩展并行重网格算法

获取原文
获取原文并翻译 | 示例

摘要

Block-structured adaptive mesh refinement (BSAMR) is widely used within simulation software because it improves the utilization of computing resources by refining the mesh only where necessary. For BSAMR to scale onto existing petascale and eventually exascale computers all portions of the simulation need to weak scale ideally. Any portions of the simulation that do not will become a bottleneck at larger numbers of cores. The challenge is to design algorithms that will make it possible to avoid these bottlenecks on exascale computers. One step of existing BSAMR algorithms involves determining where to create new patches of refinement. The Berger-Rigoutsos algorithm is commonly used to perform this task. This paper provides a detailed analysis of the performance of two existing parallel implementations of the Berger-Rigoutsos algorithm and develops a new parallel implementation of the Berger-Rigoutsos algorithm and a tiled algorithm that exhibits ideal scalability. The analysis and computational results up to 98 304 cores are used to design performance models which are then used to predict how these algorithms will perform on 100M cores.
机译:块结构自适应网格细化(BSAMR)在仿真软件中被广泛使用,因为它通过仅在必要时细化网格来提高计算资源的利用率。为了使BSAMR能够扩展到现有的petascale以及最终的exascale计算机,模拟的所有部分都需要理想地弱缩放。在较大数量的内核上,仿真的任何未出现部分将成为瓶颈。面临的挑战是设计算法,以使其能够避免在百亿亿次计算机上出现这些瓶颈。现有BSAMR算法的第一步涉及确定在哪里创建新的细化补丁。 Berger-Rigoutsos算法通常用于执行此任务。本文对Berger-Rigoutsos算法的两个现有并行实现的性能进行了详细分析,并开发了Berger-Rigoutsos算法和具有理想可伸缩性的平铺算法的新并行实现。多达98 304个内核的分析和计算结果用于设计性能模型,然后用于预测这些算法在100M内核上的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号