首页> 外文期刊>Concurrency and computation: practice and experience >GPGPUs in computational finance: massive parallel computing for American style options
【24h】

GPGPUs in computational finance: massive parallel computing for American style options

机译:GPGPU在计算金融中的应用:适用于美式风格的大规模并行计算

获取原文
获取原文并翻译 | 示例

摘要

The pricing of American style and multiple exercise options is a very challenging problem in mathematical finance. One usually employs a least squares Monte Carlo approach (Longstaff-Schwartz method) for the evaluation of conditional expectations, which arise in the backward dynamic programming principle for such optimal stopping or stochastic control problems in a Markovian framework. Unfortunately, these least squares MC approaches are rather slow and allow, because of the dependency structure in the backward dynamic programming principle, no parallel implementation neither on the MC level nor on the time layer level of this problem. We therefore present in this paper a quantization method for the computation of the conditional expectations that allows a straightforward parallelization on the MC level. Moreover, we are able to develop for first-order autoregressive processes a further parallelization in the time domain, which makes use of faster memory structures and therefore maximizes parallel execution. Furthermore, we discuss the generation of random numbers in parallel on a GPGPU architecture, which is the crucial tool for the application of massive parallel computing architectures in mathematical finance. Finally, we present numerical results for a CUDA implementation of these methods. It will turn out that such an implementation leads to an impressive speed-up compared with a serial CPU implementation.
机译:美式金融定价和多种执行选择权是数学金融中一个非常具有挑战性的问题。人们通常采用最小二乘蒙特卡罗方法(Longstaff-Schwartz方法)来评估条件期望值,这是在马尔可夫框架中针对此类最优停止或随机控制问题的后向动态编程原理中产生的。不幸的是,由于后向动态编程原理中的依赖关系结构,这些最小二乘MC方法相当慢,并且不允许在此问题的MC级别或时间层级别上都没有并行实现。因此,我们在本文中提出了一种用于条件期望值计算的量化方法,该方法允许在MC级别进行直接并行化。此外,我们能够为一阶自回归过程开发时域中的进一步并行化,从而利用更快的内存结构,从而最大程度地提高并行执行速度。此外,我们讨论了在GPGPU架构上并行生成随机数,这是将大规模并行计算架构应用于数学金融的关键工具。最后,我们给出了这些方法的CUDA实现的数值结果。事实证明,与串行CPU实现相比,这种实现带来了令人印象深刻的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号