首页> 外文期刊>Concurrency and computation: practice and experience >Towards the optimal synchronization granularity for dynamic scheduling of pipelined computations on heterogeneous computing systems
【24h】

Towards the optimal synchronization granularity for dynamic scheduling of pipelined computations on heterogeneous computing systems

机译:面向异构计算系统上流水线计算的动态调度的最佳同步粒度

获取原文
获取原文并翻译 | 示例

摘要

Loops are the richest source of parallelism in scientific applications. A large number of loop scheduling schemes have therefore been devised for loops with and without data dependencies (modeled as dependence distance vectors) on heterogeneous clusters. The loops with data dependencies require synchronization via cross-node communication. Synchronization requires fine-tuning to overcome the communication overhead and to yield the best possible overall performance. In this paper, a theoretical model is presented to determine the granularity of synchronization that minimizes the parallel execution time of loops with data dependencies when these are parallelized on heterogeneous systems using dynamic self-scheduling algorithms. New formulas are proposed for estimating the total number of scheduling steps when a threshold for the minimum work assigned to a processor is assumed. The proposed model uses these formulas to determine the synchronization granularity that minimizes the estimated parallel execution time. The accuracy of the proposed model is verified and validated via extensive experiments on a heterogeneous computing system. The results show that the theoretically optimal synchronization granularity, as determined by the proposed model, is very close to the experimentally observed optimal synchronization granularity, with no deviation in the best case, and within 38.4% in the worst case.
机译:在科学应用中,循环是并行性的最丰富来源。因此,已经为在异构簇上具有和没有数据依赖性(建模为依赖性距离矢量)的循环设计了许多循环调度方案。具有数据依赖性的循环需要通过跨节点通信进行同步。同步需要进行微调,以克服通信开销并产生最佳的总体性能。在本文中,提出了一种理论模型来确定同步的粒度,该粒度可以在使用动态自调度算法在异构系统上并行化具有数据依赖性的循环时,最大程度地减少循环的并行执行时间。当假设分配给处理器的最小工作的阈值时,提出了新的公式来估计调度步骤的总数。提出的模型使用这些公式来确定同步粒度,以最大程度地减少估计的并行执行时间。通过在异构计算系统上进行的大量实验,验证并验证了所提出模型的准确性。结果表明,由建议的模型确定的理论上最佳同步粒度非常接近于实验观察到的最佳同步粒度,在最佳情况下没有偏差,在最坏情况下在38.4%以内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号