首页> 外文期刊>Concurrency and computation: practice and experience >An energy-efficient localization algorithm for mobile vehicles in vehicle to vehicle network
【24h】

An energy-efficient localization algorithm for mobile vehicles in vehicle to vehicle network

机译:车对车网络中移动车辆的节能定位算法

获取原文
获取原文并翻译 | 示例

摘要

Traditional vehicle localization is based on global positioning system. However, the global positioning system is limited in shadowed environments such as underground carports, tunnels, and urban zones. This paper describes a vehicle positioning solution in an urban environment with the aid of vehicle to vehicle (V2V) networking, which utilizes the existing roadside sensors of the V2V network. The designed localization scheme is based on angle of arrival measurements. Compared with beamforming, minimum variance distortionless response, and subspace-based methods, an angle of arrival estimation method presented in this paper called sparsity angle sensing, based on a sparse representation of sensor measurements and compressive sensing theory, outperforms the other three methods in spatial resolution and robustness. Then the paper applies the novel angle of arrival estimation algorithm into an energy-efficient localization scheme design in a V2V network. Compared with sensor-based approaches, the proposed scheme relieves the requirements of sensor size and energy consumption, and reduces communication and computation overhead. Simulation results show the effectiveness of the proposed scheme in terms of reducing the positioning error.
机译:传统的车辆定位基于全球定位系统。但是,全球定位系统仅限于阴影环境,例如地下车棚,隧道和市区。本文介绍了借助车辆对车辆(V2V)网络的城市环境中的车辆定位解决方案,该网络利用了V2V网络的现有路边传感器。设计的定位方案基于到达角测量值。与波束成形,最小方差无失真响应和基于子空间的方法相比,本文提出的一种到达角估计方法称为稀疏角度感测,它基于传感器测量值的稀疏表示和压缩感测理论,在空间方面优于其他三种方法分辨率和鲁棒性。然后,本文将新颖的到达角估计算法应用于V2V网络中的高效节能定位方案设计中。与基于传感器的方法相比,该方案减轻了传感器尺寸和能耗的要求,并减少了通信和计算开销。仿真结果表明了该方案在减小定位误差方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号