首页> 外文期刊>Concurrency and Computation >Shrinker: efficient live migration of virtual clusters over wide area networks
【24h】

Shrinker: efficient live migration of virtual clusters over wide area networks

机译:收缩器:通过广域网有效地实时迁移虚拟集群

获取原文
获取原文并翻译 | 示例

摘要

Live virtual machine migration is a powerful feature of virtualization technologies. It enables efficient load balancing, reduces energy consumption through dynamic consolidation, and makes infrastructure maintenance transparent to users. Although live migration is available across wide area networks with state of the art systems, it remains expensive to use because of the large amounts of data to transfer, especially when migrating virtual clusters rather than single virtual machine instances. As evidenced by previous research, virtual machines running identical or similar operating systems have significant portions of their memory and storage containing identical data. We propose Shrinker, a live virtual machine migration system leveraging this common data to improve live virtual cluster migration between data centers interconnected by wide area networks. Shrinker detects memory pages and disk blocks duplicated in a virtual cluster to avoid sending the same content multiple times over wide-area network links. Virtual machine data is retrieved in the destination site with distributed content-based addressing. We implemented a prototype of Shrinker in the KVM (Kernel-based Virtual Machine) hypervisor and present a performance evaluation in a distributed environment. Experiments show that it reduces both total data transferred and total migration time.
机译:实时虚拟机迁移是虚拟化技术的强大功能。它可以实现有效的负载平衡,通过动态整合减少能耗,并使基础架构维护对用户透明。尽管实时迁移可在具有最新系统的广域网中进行,但由于要传输大量数据,因此使用起来仍然很昂贵,尤其是在迁移虚拟集群而不是单个虚拟机实例时。如先前的研究所证明,运行相同或相似操作系统的虚拟机的内存和存储中有很大一部分包含相同的数据。我们建议使用Shrinker,这是一种实时虚拟机迁移系统,可以利用这些通用数据来改善通过广域网互连的数据中心之间的实时虚拟集群迁移。 Shrinker可以检测在虚拟群集中重复的内存页面和磁盘块,以避免通过广域网链接多次发送相同的内容。使用基于分布式内容的寻址在目标站点中检索虚拟机数据。我们在KVM(基于内核的虚拟机)管理程序中实现了Shrinker的原型,并提出了在分布式环境中的性能评估。实验表明,它可以减少传输的总数据和总的迁移时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号