首页> 外文期刊>Concurrency and computation: practice and experience >Improving the user experience of the rCUDA remote GPU virtualization framework
【24h】

Improving the user experience of the rCUDA remote GPU virtualization framework

机译:改善rCUDA远程GPU虚拟化框架的用户体验

获取原文
获取原文并翻译 | 示例

摘要

Graphics processing units (GPUs) are being increasingly embraced by the high-performance computingrncommunity as an effective way to reduce execution time by accelerating parts of their applications. remoternCUDA (rCUDA) was recently introduced as a software solution to address the high acquisition costs andrnenergy consumption of GPUs that constrain further adoption of this technology. Specifically, rCUDA is arnmiddleware that allows a reduced number of GPUs to be transparently shared among the nodes in a cluster.rnAlthough the initial prototype versions of rCUDA demonstrated its functionality, they also revealed concernsrnwith respect to usability, performance, and support for new CUDA features. In response, in this paper,rnwe present a new rCUDA version that (1) improves usability by including a new component that allowsrnan automatic transformation of any CUDA source code so that it conforms to the needs of the rCUDArnframework, (2) consistently features low overhead when using remote GPUs thanks to an improved newrncommunication architecture, and (3) supports multithreaded applications and CUDA libraries. As a result,rnfor any CUDA-compatible program, rCUDA now allows the use of remote GPUs within a cluster with lowrnoverhead, so that a single application running in one node can use all GPUs available across the cluster,rnthereby extending the single-node capability of CUDA.
机译:高性能计算社区越来越重视图形处理单元(GPU),它是通过加速其部分应用程序缩短执行时间的有效方法。最近推出了remoternCUDA(rCUDA)作为软件解决方案,以解决GPU的高购置成本和能耗问题,从而限制了该技术的进一步采用。具体而言,rCUDA是一种中间件软件,可以在群集中的节点之间透明地共享数量减少的GPU。尽管rCUDA的初始原型版本展示了其功能,但它们也显示出对可用性,性能以及对新CUDA功能的支持的担忧。 。作为回应,在本文中,我们提出了一个新的rCUDA版本,该版本(1)通过包括一个新组件来提高可用性,该组件允许对任何CUDA源代码进行自动转换,从而使其符合rCUDArnframework的需求,(2)始终具有较低的功能得益于改进的新型通信架构,在使用远程GPU时的开销很大;(3)支持多线程应用程序和CUDA库。因此,对于任何与CUDA兼容的程序,rCUDA现在允许在开销较低的群集中使用远程GPU,以便在一个节点中运行的单个应用程序可以使用群集中所有可用的GPU,从而扩展了单节点功能。的CUDA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号