首页> 外文期刊>Concurrency and Computation >On the benefits of the remote GPU virtualizationmechanism: The Rcuda case
【24h】

On the benefits of the remote GPU virtualizationmechanism: The Rcuda case

机译:关于远程GPU虚拟化机制的好处:Rcuda案例

获取原文
获取原文并翻译 | 示例

摘要

Graphics processing units (GPUs) are being adopted in many computing facilities given theirrnextraordinary computing power, which makes it possible to accelerate many general purposernapplications from different domains. However, GPUs also present several side effects, such asrnincreased acquisition costs as well as larger space requirements. They also require more powerfulrnenergy supplies. Furthermore,GPUs still consume some amount of energy while idle, and theirrnutilization is usually low for most workloads. In a similarway to virtualmachines, the use of virtualrnGPUs may address the aforementioned concerns. In this regard, the remote GPU virtualizationrnmechanism allows an application being executed in a node of the cluster to transparently use thernGPUs installed at other nodes. Moreover, this technique allows to share the GPUs present in therncomputing facility among the applications being executed in the cluster. In this way, several applicationsrnbeing executed in different (or the same) cluster nodes can share 1 ormore GPUs locatedrnin other nodes of the cluster. Sharing GPUs should increase overall GPU utilization, thus reducingrnthe negative impact of the side effects mentioned before. Reducing the total amount of GPUsrninstalled in the cluster may also be possible. In this paper, we explore some of the benefits thatrnremote GPU virtualization brings to clusters. For instance, this mechanism allows an applicationrnto use all the GPUs present in the computing facility. Another benefit of this technique is thatrncluster throughput, measured as jobs completed per time unit, is noticeably increased when thisrntechnique is used. In this regard, cluster throughput can be doubled for some workloads. Furthermore,rnin addition to increase overallGPUutilization, total energy consumption can be reduced uprnto 40%. This may be key in the context of exascale computing facilities, which present an importantrnenergy constraint. Other benefits are related to the cloud computing domain, where a GPUrncan be easily shared among several virtual machines. Finally,GPUmigration (and therefore serverrnconsolidation) is one more benefit of this novel technique.
机译:鉴于图形处理单元(GPU)的非凡计算能力,它们已在许多计算设施中采用,这使得加速来自不同领域的许多通用应用成为可能。但是,GPU也存在一些副作用,例如增加的购置成本以及更大的空间需求。他们还需要更强大的能源供应。此外,GPU在闲置时仍会消耗一些能量,对于大多数工作负载而言,它们的利用率通常很低。与虚拟机类似,使用虚拟GPU可以解决上述问题。在这方面,远程GPU虚拟化机制允许在集群的节点中执行的应用透明地使用安装在其他节点上的GPU。此外,该技术允许在集群中执行的应用程序之间共享存在于计算设备中的GPU。这样,在不同(或相同)群集节点中执行的几个应用程序可以共享位于群集其他节点中的1个或多个GPU。共享GPU应该增加GPU的整体利用率,从而减少上述副作用的负面影响。减少集群中安装的GPU的总量也是可能的。在本文中,我们探讨了远程GPU虚拟化为集群带来的一些好处。例如,该机制允许应用程序使用计算设备中存在的所有GPU。此技术的另一个好处是,使用该技术时,以每时间单位完成的作业数衡量的集群吞吐量显着提高。在这方面,对于某些工作负载,群集吞吐量可以增加一倍。此外,除了提高整体GPU利用率外,总能耗还可降低到40%。在百亿亿次计算设施的背景下,这可能是关键,而亿万次计算设施提出了重要的能源约束。其他好处与云计算领域有关,在该领域中,可以在多个虚拟机之间轻松共享GPUrn。最后,GPU迁移(以及服务器合并)是这项新技术的另一个好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号