首页> 外文期刊>Concurrency, practice and experience >Finding near-perfect parameters for hardware and code optimizations with automatic multi-objective design space explorations
【24h】

Finding near-perfect parameters for hardware and code optimizations with automatic multi-objective design space explorations

机译:通过自动多目标设计空间探索,找到用于硬件和代码优化的近乎完美的参数

获取原文
获取原文并翻译 | 示例

摘要

In the design process of computer systems or processor architectures, typically many different parameters arernexposed to configure, tune, and optimize every component of a system. For evaluations and before production,rnit is desirable to know the best setting for all parameters. Processing speed is no longer the only objectivernthat needs to be optimized; power consumption, area, and so on have become very important. Thus, thernbest configurations have to be found in respect to multiple objectives. In this article, we use a multi-objectiverndesign space exploration tool called Framework for Automatic Design Space Exploration (FADSE) to automaticallyrnfind near-optimal configurations in the vast design space of a processor architecture together withrna tool for code optimizations and hence evaluate both automatically. As example, we use the Grid ALU Processorrn(GAP) and its postlink optimizer called GAPtimize, which can apply feedback-directed and platformspecificrncode optimizations. Our results show that FADSE is able to cope with both design spaces. Less thanrn25% of the maximal reasonable hardware effort for the scalable elements of the GAP is enough to achieve thernprocessor’s performance maximum.With a performance reduction tolerance of 10%, the necessary hardwarerncomplexity can be further reduced by about two-thirds. The found high-quality configurations are analyzed,rnexhibiting strong relationships between the parameters of the GAP, the distribution of complexity, and therntotal performance. These performance numbers can be improved by applying code optimizations concurrentlyrnto optimizing the hardware parameters. FADSE can find near-optimal configurations by effectivelyrncombining and selecting parameters for hardware and code optimizations in a short time. The maximumrnobserved speedup is 15%. With the use of code optimizations, the maximum possible reduction of thernhardware resources, while sustaining the same performance level, is 50%.
机译:在计算机系统或处理器体系结构的设计过程中,通常会暴露许多不同的参数以配置,调整和优化系统的每个组件。为了进行评估并在生产之前,希望了解所有参数的最佳设置。处理速度不再是需要优化的唯一目标。功耗,面积等已变得非常重要。因此,必须针对多个目标找到最佳配置。在本文中,我们使用称为自动设计空间探索框架(FADSE)的多目标设计空间探索工具在处理器体系结构的广阔设计空间中自动找到接近最佳的配置以及用于代码优化的rna工具,从而对两者进行自动评估。例如,我们使用了网格ALU处理器(GAP)及其称为GAPtimize的后链接优化器,它们可以应用反馈导向和平台特定的代码优化。我们的结果表明,FADSE能够应对两个设计空间。对于GAP的可伸缩元素而言,最大合理硬件工作量的不到25%足以实现处理器的最大性能。性能降低容限为10%,则所需的硬件复杂度可以进一步降低三分之二。分析发现的高质量配置,展示了GAP参数,复杂性分布和总体性能之间的密切关系。通过同时应用代码优化来优化硬件参数,可以提高这些性能数字。 FADSE可以通过在短时间内有效地组合和选择用于硬件和代码优化的参数来找到接近最佳的配置。最大可观察到的加速比为15%。通过使用代码优化,可以最大程度地减少硬件资源,同时保持相同的性能水平,为50%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号