首页> 外文期刊>Concurrency and computation: practice and experience >Qespera: an adaptive framework for prediction of queue waiting times in supercomputer systems
【24h】

Qespera: an adaptive framework for prediction of queue waiting times in supercomputer systems

机译:Qespera:用于预测超级计算机系统中队列等待时间的自适应框架

获取原文
获取原文并翻译 | 示例

摘要

Production parallel systems are space-shared, and resource allocation on such systems is usually performed using a batch queue scheduler. Jobs submitted to the batch queue experience a variable delay before the requested resources are granted. Predicting this delay can assist users in planning experiment time-frames and choosing sites with less turnaround times and can also help meta-schedulers make scheduling decisions. In this paper, we present an integrated adaptive framework, Qespera, for prediction of queue waiting times on parallel systems. We propose a novel algorithm based on spatial clustering for predictions using history of job submissions and executions. The framework uses adaptive set of strategies for choosing either distributions or summary of features to represent the system state and to compare with history jobs, varying the weights associated with the features for each job prediction, and selecting a particular algorithm dynamically for performing the prediction depending on the characteristics of the target and history jobs. Our experiments with real workload traces from different production systems demonstrate up to 22% reduction in average absolute error and up to 56% reduction in percentage prediction error over existing techniques. We also report prediction errors of less than 1h for a majority of the jobs. Copyright © 2015 John Wiley & Sons, Ltd.
机译:生产并行系统是空间共享的,并且通常使用批处理队列调度程序在此类系统上分配资源。提交给批处理队列的作业在授予请求的资源之前会经历可变的延迟。预测此延迟可以帮助用户规划实验时间范围并选择周转时间更短的站点,还可以帮助元计划程序制定计划决策。在本文中,我们提出了一个集成的自适应框架Qespera,用于预测并行系统上的队列等待时间。我们提出了一种基于空间聚类的新颖算法,用于使用作业提交和执行的历史进行预测。该框架使用自适应策略集来选择功能的分布或摘要以表示系统状态并与历史作业进行比较,为每个作业预测更改与功能相关的权重,并根据情况动态选择特定算法以执行预测目标和历史工作的特点。我们对来自不同生产系统的实际工作负载跟踪进行的实验表明,与现有技术相比,平均绝对误差最多可减少22%,预测误差百分比最多可减少56%。我们还报告了大多数工作的预测误差小于1小时。版权所有©2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号