首页> 外文期刊>Concurrency and Computation >A comparison of classifiers and features for authorship authentication of social networking messages
【24h】

A comparison of classifiers and features for authorship authentication of social networking messages

机译:社交网络消息作者身份验证的分类器和功能的比较

获取原文
获取原文并翻译 | 示例

摘要

This paper develops algorithms and investigates various classifiers to determine the authenticity of shortrnsocial network postings, an average of 20.6 words, from Facebook. This paper presents and discussesrnseveral experiments using a variety of classifiers. The goal of this research is to determine the degree tornwhich such postings can be authenticated as coming from the purported user and not from an intruder.rnVarious sets of stylometry and ad hoc social networking features were developed to categorize 9259 postsrnfrom 30 Facebook authors as authentic or non-authentic. An algorithm to utilize machine-learning classifiersrnfor investigating this problem is described, and an additional voting algorithm that combines three classifiersrnis investigated. This research is one of the first works that focused on authorship authentication in shortrnmessages, such as postings on social network sites. The challenges of applying traditional stylometryrntechniques on short messages are discussed. Experimental results demonstrate an average accuracy rate ofrn79.6% among 30 users. Further empirical analyses evaluate the effect of sample size, feature selection, userrnwriting style, and classification method on authorship authentication, indicating varying degrees of successrncompared with previous studies.
机译:本文开发了算法并调查了各种分类器,以确定来自Facebook的短社交网络帖子的真实性(平均20.6个单词)。本文介绍并讨论了使用多种分类器的几个实验。这项研究的目的是确定这种帖子可以被鉴定为来自声称的用户而非入侵者的程度。rn开发了各种样式和特设社交网络功能,将来自30位Facebook作者的9259条帖子分类为真实或真实。非真实的。描述了一种利用机器学习分类器来研究此问题的算法,并结合了三个被研究的分类器。这项研究是针对短消息(例如,社交网站上的帖子)中的作者身份验证的第一批作品之一。讨论了在短消息上应用传统样式技术的挑战。实验结果表明,在30位用户中,平均准确率达到79.6%。进一步的实证分析评估了样本量,特征选择,用户书写风格和分类方法对作者身份的影响,表明与以前的研究相比,成功的程度有所不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号