首页> 外文期刊>Concurrency and computation: practice and experience >Efficient and high-quality sparse graph coloring on GPUs
【24h】

Efficient and high-quality sparse graph coloring on GPUs

机译:在GPU上进行高效,高质量的稀疏图形着色

获取原文
获取原文并翻译 | 示例

摘要

Graph coloring has been broadly used to discover concurrency in parallel computing. To speed uprngraph coloring for large-scale datasets, parallel algorithms have been proposed to leverage modernGPUs.rnExistingGPUimplementations either have limited performance or yield unsatisfactoryrncoloring quality (too many colors assigned).We present a work-efficient parallel graph coloringrnimplementation on GPUs with good coloring quality. Our approach uses the speculative greedyrnscheme, which inherently yields better quality than the method of finding maximal independentrnset. To achieve high performance on GPUs, we refine the algorithm to leverage efficient operatorsrnand alleviate conflicts.We also incorporate common optimization techniques to further improvernperformance. Our method is evaluated with both synthetic and real-world sparse graphs on thernNVIDIA GPU. Experimental results show that our proposed implementation achieves averagedrn4.1 × (up to 8.9 × ) speedup over the serial implementation. It also outperforms the existing GPUrnimplementation fromtheNVIDIACUSPARSElibrary (2.2× average speedup), while yieldingmuchrnbetter coloring quality than CUSPARSE.
机译:图形着色已广泛用于发现并行计算中的并发性。为了加快大型数据集的图形着色,已提出了并行算法以利用现代GPU.rnn现有的GPU实现要么性能有限,要么生成的着色质量不令人满意(分配的颜色太多)。我们提出了一种具有良好着色质量的高效GPU并行图形着色实现。我们的方法使用了投机式贪婪方案,其本质上比发现最大独立集的方法产生更好的质量。为了在GPU上实现高性能,我们对算法进行了改进,以利用高效的运算符并缓解冲突。我们还采用了常见的优化技术来进一步提高性能。我们的方法通过NVIDIA GPU上的合成稀疏图和实际稀疏图进行评估。实验结果表明,与串行实现相比,我们提出的实现实现了平均rn4.1×(最高8.9×)的加速。它也优于NVIDIA CUSPARSE库中现有的GPU实现(2.2倍平均加速),同时产生比CUSPARSE更好的着色质量。

著录项

  • 来源
  • 作者单位

    College of Computer, National University ofDefense Technology, Changsha, 410073, China;

    College of Computer, National University ofDefense Technology, Changsha, 410073, China;

    College of Computer, National University ofDefense Technology, Changsha, 410073, China;

    College of Computer, National University ofDefense Technology, Changsha, 410073, China;

    College of Computer, National University ofDefense Technology, Changsha, 410073, China;

    College of Computer, National University ofDefense Technology, Changsha, 410073, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    GPU; graph coloring; speculative greedy;

    机译:GPU;图形着色投机贪婪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号