首页> 外文期刊>European journal of combinatorics >Improper coloring of sparse graphs with a given girth, I: (0,1)-colorings of triangle-free graphs
【24h】

Improper coloring of sparse graphs with a given girth, I: (0,1)-colorings of triangle-free graphs

机译:给定周长的稀疏图的着色不正确,I:无三角形图的(0,1)-着色

获取原文
获取原文并翻译 | 示例
       

摘要

A graph G is (0, 1)-colorable if V(G) can be partitioned into two sets V_0 and V_1 so that G[V_0] is an independent set and G[V_1] has maximum degree at most 1. The problem of verifying whether a graph is (0, 1)-colorable is NP-complete even in the class of planar graphs of girth 9. The maximum average degree, mad(G), of a graph G is the maximum of 2|E(H)|/|V(H)| over all subgraphs H of G. It was proved recently that every graph G with mad(G) ≤ 12 5 is (0, 1)-colorable, and this is sharp. This yields that every planar graph with girth at least 12 is (0, 1)-colorable. Let F (g) denote the supremum of a such that for some constant b_g every graph G with girth g and |E(H)| ≤ a|V(H)| + b_g for every H ? G is (0, 1)-colorable. By the above, F (3) = 1.2. We find the exact value for F (4) and F (5): F (4) = F (5) = 11/9. In fact, we also find the best possible values of b_4 and b_5: every trianglefree graph G with |E(H)| < 11|V(H)|+5/9 for every H ? G is (0, 1)-colorable, and there are infinitely many not (0, 1)-colorable graphs G with girth 5, |E(G)| = 11|V(G)|+5/9 and |E(H)| < 11|V(H)|+5/9 for every proper subgraph H of G. A corollary of our result is that every planar graph of girth 11 is (0, 1)-colorable. This answers a half of a question by Dorbec, Kaiser, Montassier and Raspaud. In a companion paper, we show that for every g, F (g) ≤ 1.25 and resolve some similar problems for the so-called (j, k)-colorings generalizing (0, 1)-colorings.
机译:如果可以将V(G)划分为两个集合V_0和V_1,使得G [V_0]是一个独立集合,并且G [V_1]的最大阶数为1,则图G是(0,1)色的。验证图是否为(0,1)-可着色的,即使在围长为9的平面图类中也是NP完全的。图G的最大平均度mad(G)最大为2 | E(H )| / | V(H)|最近证明,每个mad(G)≤12 5的图形G都是(0,1)有色的,这很明显。这样得出的结果是,每个周长至少为12的平面图都是(0,1)可着色的。令F(g)表示a的极值,使得对于某些常数b_g,每个具有围长g和| E(H)|的图G ≤a | V(H)|每H + b_g? G是(0,1)可着色的。通过以上,F(3)= 1.2。我们找到F(4)和F(5)的确切值:F(4)= F(5)= 11/9。实际上,我们还找到了b_4和b_5的最佳可能值:每个具有| E(H)|的无三角形图G每H≤11 | V(H)| +5/9 G是(0,1)-可着色的,并且有无限多个不(0,1)-着色的图G的周长为5,| E(G)|。 = 11 | V(G)| +5/9和| E(H)|对于G的每个合适的子图H,<11 | V(H)| +5/9。我们的结果必然是,每个周长11的平面图都是(0,1)可着色的。这回答了Dorbec,Kaiser,Montassier和Raspaud的一半问题。在随附的论文中,我们证明了对于每一个g,F(g)≤1.25并解决了将(0,1)色推广为所谓的(j,k)色的一些类似问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号