首页> 外文期刊>Concurrency and computation: practice and experience >Quantifying the impact of shutdown techniques for energy-efficient data centers
【24h】

Quantifying the impact of shutdown techniques for energy-efficient data centers

机译:量化关机技术对节能数据中心的影响

获取原文
获取原文并翻译 | 示例

摘要

Current large-scale systems, like datacenters and supercomputers, are facing an increasing electricity consumption. These infrastructures are often dimensioned according to the workload peak. However, as their consumption is not power-proportional when the workload is low, the power consumption is still high. Shutdown techniques have been developed to adapt the number of switched-on servers to the actual workload. However, datacenter operators are reluctant to adopt such approaches because of their potential impact on reactivity and hardware failures, and their energy gain is often largely misjudged. In this article, we evaluate the potential gain of shutdown techniques by taking into account shutdown and boot up costs in time and energy. This evaluation ismade on recent server architectures and future energy-aware architectures. Our simulations exploit real traces collected on production infrastructures under various machine configurations with several shutdown policies, with and without workload prediction. We study the impact of future's knowledge for saving energy with such policies. Finally,we examine the energy benefits brought by suspend-to-disk and suspend-to-RAM techniques, and we study the impact of shutdown techniques on the energy consumption of prospective hardware with heterogeneous processors (big-medium-little paradigm).
机译:当前的大型系统,例如数据中心和超级计算机,正面临着越来越多的电力消耗。这些基础结构通常是根据工作量高峰来确定尺寸的。但是,由于工作负载较低时它们的消耗与功率不成正比,因此功耗仍然很高。已经开发了关机技术,以使开机服务器的数量适应实际的工作量。但是,数据中心运营商不愿采用此类方法,因为它们可能会对响应性和硬件故障产生潜在影响,并且其能源收益通常会被错误地评估。在本文中,我们通过考虑关机和启动所花费的时间和精力来评估关机技术的潜在收益。该评估是基于最新的服务器体系结构和未来的能源感知体系结构进行的。我们的仿真利用具有多种关闭策略,具有和不具有工作负载预测的各种机器配置,来利用在生产基础架构上收集的真实跟踪。我们通过此类政策研究了未来知识对节能的影响。最后,我们研究了“挂磁盘”和“挂RAM”技术带来的能源收益,并研究了关机技术对使用异构处理器(大中小范式)的预期硬件的能耗的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号