首页> 外文期刊>Concurrency, practice and experience >A data-driven approach tomodeling power consumption for a hybrid supercomputer
【24h】

A data-driven approach tomodeling power consumption for a hybrid supercomputer

机译:一种用于混合超级计算机功耗建模的数据驱动方法

获取原文
获取原文并翻译 | 示例

摘要

Power consumption of current High Performance Computing systems has to be reduced by at least one order of magnitude before they can be scaled up towards ExaFLOP performance. While we can expect novel hardware technologies and architectures to contribute towards this goal, significant advances have to come also from software technologies such as proactive and power-aware scheduling, resource allocation, and fault-tolerant computing. Development of these software technologies in turn relies heavily on our ability to model and accurately predict power consumption in large computing systems. In this paper, we present a data-drivenmodel of power consumption for a hybrid supercomputer (which held the top spot in theGreen500 ranking in June 2013) that combines CPU,GPU, andMIC technologies to achieve high levels of energy efficiency. Our model takes as inputworkload characteristics—the number and location of resources that are used by each job at a certain time—and calculates a predicted power consumption at the system level. Themodel is application-code-agnostic and is based solely on a data-driven predictive approach, where log data describing the past jobs in the system are employed to estimate future power consumption. For this, three different model components are developed and integrated. The first employs support vector regression to predict power usage for jobs before these are started. The second uses a simple heuristic to predict the length of jobs, again before they start. The two predictions are then combined to estimate power consumption due to the job at all computational elements in the system. The third component is a linear model that takes as input the power consumption at the computing units and predicts system-wide power consumption. Our method achieves highly-accurate predictions starting solely from workload information and user histories. The model can be applied to power-aware scheduling and power capping: alternative workload dispatching configurations can be evaluated from a power perspective and more efficient ones can be selected. The methodology outlined here can be easily adapted to other HPC systems where the same types of log data are available.
机译:当前的高性能计算系统的功耗必须降低至少一个数量级,然后才能扩展到ExaFLOP性能。尽管我们可以期望新颖的硬件技术和体系结构为实现这一目标做出贡献,但是诸如主动式和功率感知型调度,资源分配和容错计算之类的软件技术也必须取得重大进步。反过来,这些软件技术的开发在很大程度上取决于我们对大型计算系统中的功耗进行建模和准确预测的能力。在本文中,我们提出了一种混合数据超级计算机(2013年6月在Green500排名中名列第一)的功耗数据驱动模型,该模型结合了CPU,GPU和MIC技术以实现高水平的能源效率。我们的模型将工作负载特征(每个作业在特定时间使用的资源的数量和位置)作为输入工作负载特征,并计算系统级别的预计功耗。该模型是与应用程序代码无关的,并且仅基于数据驱动的预测方法,该方法采用描述系统中过去工作的日志数据来估计未来的功耗。为此,开发并集成了三个不同的模型组件。首先使用支持向量回归来预测作业开始之前的用电量。第二种方法是使用简单的启发式方法来预测作业的长度,也就是在作业开始之前。然后将这两个预测组合起来,以估算由于系统中所有计算元素上的工作而导致的功耗。第三部分是线性模型,该线性模型将计算单元的功耗作为输入并预测系统范围的功耗。我们的方法仅从工作负载信息和用户历史记录就可以实现高精度的预测。该模型可以应用于功率感知调度和功率上限:可以从功率的角度评估备用工作负荷分配配置,并可以选择效率更高的配置。此处概述的方法可以轻松地适用于其他具有相同类型日志数据的HPC系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号