首页> 外文期刊>Concurrency and Computation >A coarse-grained page cache aware multivariate analytical model for the storage performance of a parallel file system
【24h】

A coarse-grained page cache aware multivariate analytical model for the storage performance of a parallel file system

机译:并行文件系统的存储性能的粗粒度页面缓存感知多元分析模型

获取原文
获取原文并翻译 | 示例

摘要

Huge requirements of emerging Big Data applications combined with the performance impairmentrnof current I/O subsystems pose a great challenge on data storage, management, andrnaccess performance. In order to design efficient storage systems, a clear understanding aboutrnhow factors in the I/O path affect the performance of a data-intensive application is of utmostrnimportance. This paper reports our ongoing research toward addressing this issue, presentingrna coarse-grained page cache aware multivariate analytical model for the performance of writernoperations in a parallel file system. The proposed modelwas developed to reflect the performancernbehavior observed in an extensive experimental effort, in which the impact of 14 parametersrnin the response time and throughput of the OrangeFS was investigated. More than one millionrnexperiments were carried out using four distinct computing infrastructures, providing a detailedrnperformance characterization. Additionally, a thorough evaluation of the proposed model, coveringmorernthan 14 000 scenarios, is reported, discussing both qualitative and quantitative aspects.rnEvaluation results indicate that themodel succeeded in representing the behavior of the parallelrnfile system performance, achieving a Mean Absolute Percentage Error of 39.94%.
机译:新兴大数据应用程序的巨大需求与当前I / O子系统的性能下降相结合,对数据存储,管理和访问性能提出了巨大挑战。为了设计高效的存储系统,对I / O路径中的因素如何影响数据密集型应用程序的性能的清晰了解至关重要。本文报告了我们为解决该问题而进行的研究,提出了一种用于并行文件系统中写操作性能的粗粒度页面缓存感知多元分析模型。开发提出的模型以反映在广泛的实验工作中观察到的性能,其中研究了14个参数对OrangeFS响应时间和吞吐量的影响。使用四个不同的计算基础架构进行了超过一百万次的实验,提供了详细的性能表征。此外,报告了该模型的全面评估,涵盖了超过14000个场景,讨论了定性和定量方面。评估结果表明,该模型成功地表示了并行文件系统性能的行为,平均绝对误差为39.94% 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号