首页> 外文期刊>Computing >Sampling and Probe Methods - An Algorithmical View
【24h】

Sampling and Probe Methods - An Algorithmical View

机译:采样和探测方法-算法视图

获取原文
获取原文并翻译 | 示例

摘要

Inverse scattering problems are concerned with the reconstruction of objects and parameter functions from the knowledge of scattered waves. Today, basically three different categories of methods for the treatment of the full nonlinear scattering problem are known: iterative methods, decomposition methods and sampling/probe methods. Sampling and probe methods have been proposed to detect the unknown scatterer for example in cases when the physical properties are not known or not given in a parametrized modell. A number of different approaches have been suggested over the last years. We will give a survey about these methods and explain the main ideas from an algorithmical point of view. We will group and describe the methods and discuss some relations to ideas which have been developed in the framework of impedance tomography. First, we will study the probe method of Ikehata and the singular sources method of Potthast. We show that these methods are closely related and basically form one unit with two different realizations. The second part is concerned with the range test of Potthast, Sylvester and Kusiak, the linear sampling method of Colton and Kirsch and the factorization method of Kirsch. These methods are founded on similar ideas testing the range of operators for reconstruction. In the final part we study the no response test of Luke and Potthast and the enclosure method of Ikehata. We will see that the enclosure method can be considered as a particular choice of the probing function for the no response test. These two methods are closely related and form two extremes for probing a scatterer with specially constructed waves.
机译:从散射波的知识来看,逆散射问题与对象和参数函数的重构有关。如今,基本上已经知道了三种用于处理完全非线性散射问题的方法:迭代方法,分解方法和采样/探针方法。已经提出了采样和探测方法来检测未知散射体,例如在参数化模型中物理属性未知或未给出的情况下。在过去的几年中,已经提出了许多不同的方法。我们将对这些方法进行调查,并从算法的角度解释主要思想。我们将对这些方法进行分组和描述,并讨论与在阻抗断层扫描框架内开发的一些思想的关系。首先,我们将研究池边的探测方法和Potthast的奇异源方法。我们表明这些方法密切相关,并且基本上形成了一个具有两个不同实现的单元。第二部分涉及Potthast,Sylvester和Kusiak的范围测试,Colton和Kirsch的线性采样方法以及Kirsch的因式分解方法。这些方法基于类似的思想,用于测试可重构算子的范围。在最后一部分中,我们研究了卢克和波斯塔斯特的无响应测试以及池田的封闭方法。我们将看到,对于无响应测试,可以将封闭方法视为探测功能的特定选择。这两种方法密切相关,形成了用特制波探测散射体的两个极端。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号