首页> 外文期刊>Computing and visualization in science >Nonlinear multigrid methods for total variation image denoising
【24h】

Nonlinear multigrid methods for total variation image denoising

机译:用于总变化图像去噪的非线性多重网格方法

获取原文
获取原文并翻译 | 示例

摘要

The classical image denoising technique introduced by Rudin, Osher, and Fatemi [17] a decade ago, leads to solve a constrained minimization problem for the total variation (TV) of the image. The formal first variation of the minimization problem is a nonlinear and highly anisotropic boundary value problem. In this paper, a computational PDE method based on a nonlinear multigrid scheme for restoring noisy images is suggested. Here, we examine different discretizations for the Euler–Lagrange equation as well as different smoothers within the multigrid scheme. Then we describe the iterative total variation regularization scheme, which starts with an isotropic ("smooth") problem and leads to smooth edges in the image. Within the iteration the problem becomes more and more anisotropic and converges to an image with sharp edges. Finally, we present some experimental results for synthetic and real images.
机译:十年前,Rudin,Osher和Fatemi [17]引入了经典的图像降噪技术,从而解决了图像总变化(TV)的约束最小化问题。最小化问题的形式上的第一变化是非线性且高度各向异性的边值问题。本文提出了一种基于非线性多网格方案的PDE计算方法,用于恢复噪声图像。在这里,我们研究了Euler-Lagrange方程的不同离散化以及多重网格方案中的不同平滑器。然后,我们描述了迭代的总变化正则化方案,该方案以各向同性(“平滑”)问题开始,并导致图像中的边缘平滑。在迭代过程中,问题变得越来越各向异性,并收敛为具有锐利边缘的图像。最后,我们提出一些合成和真实图像的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号