首页> 外文期刊>Computing and visualization in science >Newton-Krylov-FAC methods for problems discretized on locally refined grids
【24h】

Newton-Krylov-FAC methods for problems discretized on locally refined grids

机译:Newton-Krylov-FAC方法用于局部精化网格上离散的问题

获取原文
获取原文并翻译 | 示例

摘要

Many problems in computational science and engineering are nonlinear and time-dependent. The solutions to these problems may include spatially localized features, such as boundary layers or sharp fronts, that require very fine grids to resolve. In many cases, it is impractical or prohibitively expensive to resolve these features with a globally fine grid, especially in three dimensions. Adaptive mesh refinement (AMR) is a dynamic gridding approach that employs a fine grid only where necessary to resolve such features. Numerous AMR codes exist for solving hyperbolic problems with explicit time stepping and some classes of linear elliptic problems. Researchers have paid much less attention to the development of AMR algorithms for the implicit solution of systems of nonlinear equations. Recent efforts encompassing a variety of applications demonstrate that Newton-Krylov methods are effective when combined with multigrid preconditioners. This suggests that hierarchical methods, such as the Fast Adaptive Composite grid (FAC) method of McCormick and Thomas, can provide effective preconditioning for problems discretized on locally refined grids. In this paper, we address algorithm and implementation issues for the use of Newton-Krylov-FAC methods on structured AMR grids. In our software infrastructure, we combine nonlinear solvers from KINSOL and PETSc with the SAMRAI AMR library, and include capabilities for implicit time stepping. We have obtained convergence rates independent of the number of grid refinement levels for simple, nonlinear, Poisson-like, problems. Additional efforts to employ this infrastructure in new applications are underway.
机译:计算科学和工程学中的许多问题都是非线性的且与时间有关。这些问题的解决方案可能包括需要非常精细的网格才能解决的空间局部特征,例如边界层或锋利的前沿。在许多情况下,使用全局精细的网格(尤其是在三个维度上)解决这些特征是不切实际或昂贵的。自适应网格细化(AMR)是一种动态网格化方法,仅在需要解决此类特征的情况下才使用精细网格。存在许多用于解决具有明确时间步长的双曲型问题和某些类别的线性椭圆问题的AMR代码。对于非线性方程组隐式解的AMR算法的研究,研究人员已经很少关注。最近涉及各种应用的努力表明,与多网格预处理器结合使用时,牛顿-克里洛夫方法是有效的。这表明分层方法,例如McCormick和Thomas的快速自适应复合网格(FAC)方法,可以为局部精化网格上离散的问题提供有效的预处理。在本文中,我们解决了在结构化AMR网格上使用Newton-Krylov-FAC方法的算法和实现问题。在我们的软件基础架构中,我们将KINSOL和PETSc的非线性求解器与SAMRAI AMR库相结合,并包括用于隐式时间步长的功能。对于简单的,非线性的,类似于泊松的问题,我们获得了与网格细化级别数量无关的收敛速度。正在为在新应用程序中使用此基础结构的进一步努力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号