首页> 外文期刊>Computing in science & engineering >THE GEOMETRY OF ALGEBRAIC SYSTEMS AND THEIR EXACT SOLVING USING GROEBNER BASES
【24h】

THE GEOMETRY OF ALGEBRAIC SYSTEMS AND THEIR EXACT SOLVING USING GROEBNER BASES

机译:代数系统的几何及其使用格罗布纳基的精确求解

获取原文
获取原文并翻译 | 示例

摘要

Although exact methods for solving general polynomial systems are incorporated into well-known computer algebra systems such as derive, Maple, Mathematica, MuPad, and Reduce, only a small portion of the scientific community knows about them. This article aims to introduce one such method- Grobner bases- for non-mathematicians in an intuitive way. Specifically, we show the analogies and differences between linear and algebraic system solving, with an emphasis on the underlying geometric aspects. In the next issue, we will provide more details about Grobner bases along with some surprising applications.
机译:尽管用于求解一般多项式系统的精确方法已合并到众所周知的计算机代数系统中,例如derive,Maple,Mathematica,MuPad和Reduce,但只有一小部分科学界知道它们。本文旨在以一种直观的方式为非数学家介绍一种这样的方法-Grobner bases。具体来说,我们展示了线性和代数系统求解之间的类比和差异,并着重介绍了基本的几何方面。在下一期中,我们将提供有关Grobner基的更多详细信息以及一些令人惊讶的应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号