首页> 外文期刊>Computing reviews >A multi-agent reinforcement learning approach to robot soccer
【24h】

A multi-agent reinforcement learning approach to robot soccer

机译:机器人足球的多主体强化学习方法

获取原文
获取原文并翻译 | 示例

摘要

A multiagent reinforcement learning method is presented in this paper, along with its application to the domain of robot soccer. Reinforcement learning (RL) in a multiagent system (MAS) should be redefined to consider the joint-state and joint-action of all agents, while taking into account that other agents' actions can only be predicted. The authors propose using a probabilistic neural network (PNN) to predict actions based on joint-states as inputs. Moreover, they propose the use of a fuzzy Q-learning algorithm for RL to reduce the dimensionality of the mapping from the state space to the action space.
机译:本文提出了一种多主体强化学习方法,并将其应用于机器人足球领域。应该重新定义多主体系统(MAS)中的强化学习(RL),以考虑所有主体的联合状态和联合行动,同时考虑到其他主体的行动只能被预测。作者建议使用概率神经网络(PNN)预测基于关节状态作为输入的动作。此外,他们提出对RL使用模糊Q学习算法,以减少从状态空间到动作空间的映射的维数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号