首页> 外文期刊>Computing reviews >Real quantifier elimination for the synthesis of optimal numerical algorithms (case study: square root computation)
【24h】

Real quantifier elimination for the synthesis of optimal numerical algorithms (case study: square root computation)

机译:消除实际量词以合成最佳数值算法(案例研究:平方根计算)

获取原文
获取原文并翻译 | 示例

摘要

If we know that x~(1/2) lies in [L,U], can we produce a better bounding interval? The obvious answer is the Secant-Newton map, replacing [L,U] by [L_s,U_s]:[L+x-L~2/L+U,U+x-U~2/2U]. This is guaranteed to halve the interval (and generally does better). Is there a better algorithm? The authors, not unnaturally, restrict their search to algorithms of the form [L_2,U_2]:[L+x-q_L/l_L,U+x-q_u/l_u]. where the q_X are homogeneous quadratics in L,U and the l_X are homogeneous linears. This form is dimensionally consistent. Hence we wish to minimize the Lipschitz constant E:=sup0<L≤x~(1/2)≤U;L≠U U_2-L_2/U-L subject to various quantified constraints, where the minimum is taken over the coefficients of the q_X and l_X, ten variables in all. For example, the correctness constraint is (∨)_0<L≤x~(1/2)≤U L, U, x : O< L_2 ≤x~(1/2)≤U_2. In principle this is a problem over the theory of real closed fields, and soluble since [1,4]. In practice, such methods as are implemented are doubly exponential in the number of variables , and we have 13 (ten coefficients, x,L,U).
机译:如果我们知道x〜(1/2)位于[L,U]中,我们能否产生更好的边界区间?明显的答案是Secant-Newton映射,将[L,U]替换为[L_s,U_s]:[L + x-L〜2 / L + U,U + x-U〜2 / 2U]。可以保证将间隔减半(通常效果更好)。有更好的算法吗?作者们(并非不自然地)将搜索范围限制为[L_2,U_2]:[L + x-q_L / l_L,U + x-q_u / l_u]形式的算法。其中q_X是L,U中的齐次二次方,而l_X是齐次线性。该形式在尺寸上是一致的。因此,我们希望在各种量化约束下使Lipschitz常数E:= sup0 <L≤x〜(1/2)≤U; L≠U U_2-L_2 / UL最小,其中最小值取于q_X的系数和l_X,总共十个变量。例如,正确性约束为(∨)_0 <L≤x〜(1/2)≤UL,U,x:O <L_2≤x〜(1/2)≤U_2。原则上,这是关于实数封闭场理论的问题,自[1,4]起就可以解决。在实践中,这样实现的方法在变量数量上是双指数的,并且我们有13个(十个系数,x,L,U)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号