首页> 外文期刊>Computing. Archives for Informatics and Numerical Computation >Local projection stabilisation on S-type meshes for convection-diffusion problems with characteristic layers
【24h】

Local projection stabilisation on S-type meshes for convection-diffusion problems with characteristic layers

机译:具有特征层的对流扩散问题的S型网格上的局部投影稳定

获取原文
获取原文并翻译 | 示例

摘要

Singularly perturbed convection-diffusion problems with exponential and characteristic layers are considered on the unit square. The discretisation is based on layer-adapted meshes. The standard Galerkin method and the local projection scheme are analysed for bilinear and higher order finite element where enriched spaces were used. For bilinears, first order convergence in the ε-weighted energy norm is shown for both the Galerkin and the stabilised scheme. However, supercloseness results of second order hold for the Galerkin method in the ε-weighted energy norm and for the local projection scheme in the corresponding norm. For the enriched Q^sub p^-elements, p ≥ 2, which already contain the space P^sub p+1^, a convergence order p + 1 in the ε-weighted energy norm is proved for both the Galerkin method and the local projection scheme. Furthermore, the local projection methods provides a supercloseness result of order p + 1 in local projection norm.[PUBLICATION ABSTRACT]
机译:在单位平方上考虑具有指数层和特征层的奇摄动对流扩散问题。离散化基于适应层的网格。分析了使用富集空间的双线性和高阶有限元的标准Galerkin方法和局部投影方案。对于双线性,对于Galerkin和稳定方案,都显示了ε加权能量范数的一阶收敛。但是,在ε加权能量范数中的Galerkin方法和在相应范数中的局部投影方案都具有二阶超闭合性结果。对于已经包含空间P ^ sub p + 1 ^的丰富的Q ^ sub p ^元素,p≥2,对于Galerkin方法和方法,都证明了ε加权能量范数的收敛阶p +1。本地投影方案。此外,局部投影方法在局部投影范数中提供了p +1阶的超接近性结果。[发布摘要]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号