首页> 外文期刊>Computers & Structures >The Bathe time integration method with controllable spectral radius: The ρ_∞-Bathe method
【24h】

The Bathe time integration method with controllable spectral radius: The ρ_∞-Bathe method

机译:可控制光谱半径的Bathe时间积分方法:ρ_∞-Bathe方法

获取原文
获取原文并翻译 | 示例

摘要

We consider the Bathe implicit time integration method and focus on the time step splitting ratio and the spectral radius at large time steps to improve and generalize the scheme. The objective is to be able to prescribe the amplitude decay (dissipation) and period elongation (dispersion) for the numerical integration, and to achieve this aim in a direct and optimum manner with the minimum number of parameters. We show that the use of the time step splitting ratio and spectral radius is effective to prescribe in a smooth manner no amplitude decay to very large amplitude decays, with correspondingly small period elongation to very large period elongations while maintaining second-order accuracy. We analyze the effects of the splitting ratio and spectral radius on the stability and accuracy of the scheme and illustrate the use of these parameters in comparison with previously published methods. Furthermore, we show that with a proper setting of these parameters more accurate results may be obtained in some analyses. (C) 2018 Elsevier Ltd. All rights reserved.
机译:我们考虑了Bathe隐式时间积分方法,并着眼于大步长的时间步分比和频谱半径,以改进和推广该方案。目的是能够规定用于数值积分的幅度衰减(耗散)和周期伸长(分散),并以最少的参数数量以直接和最佳的方式实现这一目标。我们表明,使用时间步分比和频谱半径可以有效地以平稳的方式规定没有振幅衰减到非常大的振幅衰减,相应地从很小的周期延伸到很大的周期延伸,同时保持了二阶精度。我们分析了分光比和光谱半径对方案稳定性和准确性的影响,并说明了这些参数与以前发表的方法相比的使用。此外,我们表明,通过适当设置这些参数,可以在某些分析中获得更准确的结果。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号