首页> 外文期刊>Computers & Structures >Integration over simplexes for accurate domain and boundary integral evaluation in boundary element methods
【24h】

Integration over simplexes for accurate domain and boundary integral evaluation in boundary element methods

机译:单纯形积分,用于边界元方法中的准确域和边界积分评估

获取原文
获取原文并翻译 | 示例

摘要

The accuracy of boundary element methods is heavily dependent on the accurate determination of singular domain and boundary integrals on element domains. Many methods have been developed for accurate integral determination but none that is universally applicable across the range of boundary element applications. This paper is concerned with a semi-analytical method that applies to simplexes of arbitrary dimension. The method involves the careful employment of multiple integration where the inner integral is performed along a radial direction. Evaluation of the radial-inner integral on a simplex of dimension n provides n + 1 integrals on simplex domains of dimension n ― 1. It is shown in the paper that provided closed form solutions exist for the inner integrals the method can be repeated on these n + 1 simplexes providing a recursive method of integration. Performing radial inner integration on a simplex is shown to be ideal for the correct treatment of the radial singularities present. If a closed form solution is not available then a radial function is added and subtracted to facilitate the use of numerical integration. In addition to singularity annihilation the form of this radial function is selected to facilitate the continued recursive application of radial integration. The method is tested on domain and boundary integrals present in thermoelastostatic, elastodynamic and on simple test problems for which known analytical solutions exist. The results obtained using the semi-analytical simplex approach are shown to be considerably more accurate than those obtained using standard quadrature methods.
机译:边界元方法的精度在很大程度上取决于奇异域和边界上边界积分的准确确定。已经开发出许多方法来进行精确的积分测定,但是没有一种方法可以在边界元素应用范围内普遍应用。本文涉及一种适用于任意维单纯形的半分析方法。该方法涉及仔细采用多重积分,其中沿径向方向执行内部积分。对维数为n的单形上的径向内部积分的求值在维数为n -1的单形域上提供了n + 1积分。本文表明,对于内部积分,存在封闭形式的解,可以对该方法重复进行求解。 n + 1个单纯形提供了递归的集成方法。在单形上执行径向内部集成被证明是对存在的径向奇异性进行正确处理的理想选择。如果没有封闭形式的解,则添加和减去一个径向函数以利于使用数值积分。除了奇异性an灭外,还选择了此径向函数的形式,以利于径向积分的连续递归应用。对存在于热弹性,弹性动力学中的域和边界积分以及存在已知解析解的简单测试问题进行了测试。使用半分析单纯形法获得的结果显示出比使用标准正交方法获得的结果准确得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号