首页> 外文期刊>Computers & Structures >A modified particle swarm optimization-based dynamic recurrent neural network for identifying and controlling nonlinear systems
【24h】

A modified particle swarm optimization-based dynamic recurrent neural network for identifying and controlling nonlinear systems

机译:改进的基于粒子群算法的动态递归神经网络用于非线性系统的辨识和控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we first present a learning algorithm for dynamic recurrent Elman neural networks based on a modified particle swarm optimization. The proposed algorithm computes concurrently both the evolution of network structure, weights, initial inputs of the context units and self-feedback coefficient of the modified Elman network. Thereafter, we introduce and discuss a novel control method based on the proposed algorithm. More specifically, a dynamic identifier is constructed to perform speed identification and a controller is designed to perform speed control for Ultrasonic Motors (USM). Numerical experiments show that the novel identifier and controller based on the proposed algorithm can both achieve higher convergence precision and speed than other state-of-the-art algorithms. In particular, our experiments show that the identifier can approximate the USM's nonlinear input-output mapping accurately. The effectiveness of the controller is verified using different kinds of speeds of constant, step and sinusoidal types. Besides, a preliminary examination on a randomly perturbation also shows the robust characteristics of the two proposed models.
机译:在本文中,我们首先提出了一种基于改进粒子群算法的动态递归Elman神经网络学习算法。所提出的算法同时计算网络结构的演化,权重,上下文单元的初始输入以及修改后的Elman网络的自反馈系数。此后,我们介绍并讨论了一种基于所提出算法的新型控制方法。更具体地,动态标识符被构造为执行速度识别,并且控制器被设计为执行超声马达(USM)的速度控制。数值实验表明,与其他最新算法相比,基于该算法的新型识别器和控制器都可以实现更高的收敛精度和速度。特别地,我们的实验表明,标识符可以准确地逼近USM的非线性输入输出映射。使用恒定,步进和正弦波类型的不同速度来验证控制器的有效性。此外,对随机扰动的初步检查还显示了两个提出的模型的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号