...
首页> 外文期刊>Computers & Structures >Approximation of derivatives in semi-analytical structural optimization
【24h】

Approximation of derivatives in semi-analytical structural optimization

机译:半解析结构优化中的导数逼近

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper presents a straightforward and generally applicable method for detection and elimination of errors in semi-analytical design sensitivities for any kind of FE-formulation. The basic property of the semi-analytical approach is that derivatives of the stiffness matrix and the load vector are approximated by finite differences. Obviously, truncation errors occur by this method which depend on the chosen step size and the kinematic assumptions of the mechanical model. The accuracy problems in the semi-analytical sensitivity analysis result from these approximation errors [Barthelemy B, Haftka RT. Accuracy analysis of the semi-analytical method for shape sensitivity calculation. Mech Struct Mach 1988; 18:407-32]. In this contribution two beam elements (Euler-Bernoulli kinematics, Timoshenko kinematics) are utilized to emphasize the consequences of the approximation errors by an analytical computation of the error terms. These two elements show serious differences in the errors of the sensitivities. The ideas gained by these simple 1-d elements are extended further to 3-d elements with Reissner-Mindlin and Kirchhoff kinematics. The errors of the finite difference approximation of the derivatives may become serious, so it is necessary to correct them to obtain exact sensitivities. There exists a great variety of methods in the literature which try to eliminate the errors in the design sensitivities. Important contributions are published by Haftka and Adelmann, Mlejnek, Cheng and Olhoff, V. Keulen and De Boer among many others. In this paper, a method for the computation of correction factors based on product spaces of rigid body rotation vectors is presented. A straightforward derivation yields to a rigid body condition for the stiffness matrix derivative. The approximation of this derivative violates this rigid body condition due to the changed basis of the perturbed element. By the proposed method one obtains a set of correction factors related to the rigid body rotation vectors of the specific finite element. Due to the modification of the approximated stiffness matrix derivative by this set of factors one finally gets 'exact' sensitivities. The improved approximation of the stiffness matrix derivative satisfies the above mentioned rigid body condition. The basic advantage of the proposed method is the efficiency and the independence on the Finite Element formulation. In contrast to many other correction methods published so far, this approach is applicable to all kind of Finite Elements without major modifications. This gives rise to general shape optimization algorithms for a huge amount of finite elements without the necessity to derive each single element analytically.
机译:本文提出了一种简单且普遍适用的方法,用于检测和消除任何形式的FE配方的半分析设计灵敏度中的误差。半解析方法的基本特性是,刚度矩阵和载荷矢量的导数由有限差分近似。显然,这种方法会产生截断误差,这取决于所选步长和机械模型的运动学假设。这些近似误差导致了半分析灵敏度分析中的精度问题[Barthelemy B,Haftka RT。用于形状灵敏度计算的半分析方法的精度分析。机甲结构马赫1988; 18:407-32]。在这一贡献中,两个梁单元(Euler-Bernoulli运动学,Timoshenko运动学)用于通过误差项的解析计算来强调近似误差的后果。这两个要素在灵敏度误差方面显示出严重的差异。这些简单的1维元素获得的思想通过Reissner-Mindlin和Kirchhoff运动学进一步扩展到3维元素。微分的有限差分近似的误差可能变得严重,因此有必要对其进行校正以获得精确的灵敏度。文献中存在各种各样的方法,这些方法试图消除设计敏感性方面的错误。 Haftka和Adelmann,Mlejnek,Cheng和Olhoff,V。Keulen和De Boer等发表了重要的著作。本文提出了一种基于刚体旋转矢量积空间的校正因子计算方法。直接推导得出刚度矩阵导数的刚体条件。由于微分元素的变化,该导数的近似违反了这种刚体条件。通过提出的方法,可以获得与特定有限元的刚体旋转矢量有关的一组校正因子。由于这组因素对近似刚度矩阵导数的修改,人们最终获得了“精确”的灵敏度。刚度矩阵导数的改进近似满足上述刚体条件。所提出方法的基本优点是效率和有限元公式的独立性。与迄今为止发布的许多其他校正方法相比,该方法适用于所有类型的有限元,而无需进行重大修改。这就产生了用于大量有限元的通用形状优化算法,而无需解析地导出每个单个元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号