首页> 外文期刊>Computers & Structures >Upper Bound limit analysis model for FRP-reinforced masonry curved structures. Part I: Unreinforced masonry failure surfaces
【24h】

Upper Bound limit analysis model for FRP-reinforced masonry curved structures. Part I: Unreinforced masonry failure surfaces

机译:FRP加固砌体弯曲结构的上限分析模型。第一部分:未加固的砌体破坏面

获取原文
获取原文并翻译 | 示例

摘要

A two-steps approach for the FE limit analysis of FRP reinforced curved masonry structures is presented in this paper. In step I, discussed extensively in the present Part I, a simplified kinematic procedure is proposed at a cell level to obtain macroscopic masonry behavior in the case of unreinforced masonry curved structures. In step II, discussed in the companying paper (Part II) strips are applied at a structural level on the already homogeneous material.rnUnreinforced masonry strength domain is obtained by means of a compatible approach in which each brick is supposed to interact with its six neighbors by means of rigid-plastic interfaces with frictional behavior representing mortar joints. A sub-class of possible elementary deformations is a-priori chosen to describe joints cracking under in- and out-of-plane loads. Suitable internal macroscopic actions are applied on the boundary of the representative element of volume, in analogy to the flat case. The limit analysis problem at a cell level is finally solved adopting an upper bound approach and discretizing the seven bricks by means of six-noded rigid infinitely resistant wedge elements. In this way, internal power dissipation is possible only at the interfaces between wedge adjoining elements (brick-brick interfaces and mortar joints with zero thickness).rnSeveral examples consisting of single and double curvature elementary cells are analyzed. For each representative element of volume, in- and out-of-plane failure surfaces are provided. Macroscopic strength domains so recovered will be utilized in Part II for the limit analysis of entire vaults FRP reinforced.
机译:本文提出了一种两步法对FRP加固曲线砌体结构进行有限元分析。在本部分第一部分中广泛讨论的步骤I中,提出了在单元一级简化的运动学过程,以便在未增强的砌体弯曲结构的情况下获得宏观的砌体行为。在第二步中,在陪同文件(第二部分)中讨论了,将条带在已经均匀的材料上在结构级别上应用。通过一种兼容的方法来获得未增强的砌体强度域,在这种方法中,每块砖都应该与其六个邻域相互作用通过具有摩擦特性的刚性-塑性界面来表示砂浆缝。先验选择可能的基本变形的子类来描述在平面内和平面外载荷下的节点开裂。类似于平坦的情况,在体积的代表元素的边界上施加了适当的内部宏观作用。最终,采用上限方法并通过六节点刚性无限阻力楔形单元离散化了七个砖,从而解决了单元级别的极限分析问题。这样,仅在楔形相邻元素之间的界面处(砖块-砖墙界面和具有零厚度的灰浆接头)才可能发生内部功耗。rn分析了由单曲率和双曲率基本单元组成的几个示例。对于体积的每个代表性元素,均提供了面内和面外破坏面。如此恢复的宏观强度域将在第二部分中用于整个FRP加固拱顶的极限分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号