首页> 外文期刊>Computers & Structures >On the low- and mid-frequency forced response of elastic structures using wave finite elements with one-dimensional propagation
【24h】

On the low- and mid-frequency forced response of elastic structures using wave finite elements with one-dimensional propagation

机译:一维传播的波动有限元对弹性结构的低频和中频强迫响应

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the wave finite element (WFE) method is investigated for computing the low- and mid-frequency forced response of straight elastic structures. The method uses wave modes as representation basis. These are numerically calculated using the finite element model of a typical substructure with a small number of degrees of freedom, and invoking Bloch's theorem. The resulting wave-based boundary value problem is presented and adapted so as to address Neumann-to-Dirichlet problems involving single as well as coupled structures. A regularization strategy is also presented. It improves the convergence of the WFE method when multi-layered systems are specifically dealt with. It employs an alternative form of the wave-based boundary value problem quite stable and easy to solve. The relevance of both classic and regularized WFE formalisms is discussed and numerically established compared with standard finite element solutions.
机译:本文研究了波浪有限元(WFE)方法来计算直线弹性结构的低频和中频强迫响应。该方法使用波动模式作为表示基础。这些是使用具有少量自由度的典型子结构的有限元模型并调用布洛赫定理(Bloch's theorem)进行数值计算的。提出并修改了由此产生的基于波的边值问题,以解决涉及单个结构和耦合结构的Neumann-to-Dirichlet问题。还提出了一种正则化策略。当专门处理多层系统时,它改善了WFE方法的收敛性。它采用了另一种形式的基于波的边值问题,该问题相当稳定且易于解决。与标准的有限元解决方案相比,讨论了经典和正规的WFE形式主义的相关性,并在数值上进行了建立。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号