首页> 外文期刊>Computers & Structures >Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions
【24h】

Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions

机译:贝叶斯后处理器和子集仿真的其他增强功能,用于估计高维中的故障概率

获取原文
获取原文并翻译 | 示例

摘要

Estimation of small failure probabilities is one of the most important and challenging computational problems in reliability engineering. The failure probability is usually given by an integral over a high-dimensional uncertain parameter space that is difficult to evaluate numerically. This paper focuses on enhancements to Subset Simulation (SS), proposed by Au and Beck, which provides an efficient algorithm based on MCMC (Markov chain Monte Carlo) simulation for computing small failure probabilities for general high-dimensional reliability problems. First, we analyze the Modified Metropolis algorithm (MMA), an MCMC technique, which is used in SS for sampling from high-dimensional conditional distributions. The efficiency and accuracy of SS directly depends on the ergodic properties of the Markov chains generated by MMA, which control how fast the chain explores the parameter space. We present some observations on the optimal scaling of MMA for efficient exploration, and develop an optimal scaling strategy for this algorithm when it is employed within SS. Next, we provide a theoretical basis for the optimal value of the conditional failure probability p_0, an important parameter one has to choose when using SS. We demonstrate that choosing any p_0 ∈ [0.1,0.3] will give similar efficiency as the optimal value of p_0. Finally, a Bayesian post-processor SS+ for the original SS method is developed where the uncertain failure probability that one is estimating is modeled as a stochastic variable whose possible values belong to the unit interval. Simulated samples from SS are viewed as informative data relevant to the system's reliability. Instead of a single real number as an estimate, SS+ produces the posterior PDF of the failure probability, which takes into account both prior information and the information in the sampled data. This PDF quantifies the uncertainty in the value of the failure probability and it may be further used in risk analyses to incorporate this uncertainty. To demonstrate SS+, we consider its application to two different reliability problems: a linear reliability problem and reliability analysis of an elasto-plastic structure subjected to strong seismic ground motion. The relationship between the original SS and SS+ is also discussed.
机译:小故障概率的估计是可靠性工程中最重要和最具挑战性的计算问题之一。失效概率通常由难以量化评估的高维不确定参数空间上的积分给出。本文着重于Au和Beck提出的子集仿真(SS)的增强,它提供了一种基于MCMC(马尔可夫链蒙特卡洛)仿真的有效算法,用于计算一般高维可靠性问题的小故障概率。首先,我们分析一种改进的Metropolis算法(MMA),一种MCMC技术,该算法在SS中用于从高维条件分布中采样。 SS的效率和准确性直接取决于MMA生成的马尔可夫链的遍历属性,该属性控制MMA链探索参数空间的速度。我们提出了一些关于MMA最佳缩放以进行有效探索的观察,并为该算法在SS中使用时开发了一种最佳缩放策略。接下来,我们为条件失效概率p_0的最佳值提供了理论基础,这是使用SS时必须选择的重要参数。我们证明选择任何一个p_0∈[0.1,0.3]都将产生与p_0的最佳值相似的效率。最后,针对原始SS方法开发了贝叶斯后处理器SS +,其中将一个人估计的不确定故障概率建模为一个随机变量,其可能值属于单位间隔。来自SS的模拟样本被视为与系统可靠性有关的信息性数据。 SS +生成失败概率的后验PDF,而不是将单个实数作为估计,它同时考虑了先验信息和采样数据中的信息。该PDF量化了故障概率值中的不确定性,并且可以在风险分析中进一步使用它来包含此不确定性。为了演示SS +,我们考虑将其应用于两个不同的可靠性问题:线性可靠性问题和承受强烈地震地震动的弹塑性结构的可靠性分析。还讨论了原始SS和SS +之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号