首页> 外文期刊>Computers & Structures >Use of Lagrange multipliers to combine 1D variable kinematic finite elements
【24h】

Use of Lagrange multipliers to combine 1D variable kinematic finite elements

机译:使用Lagrange乘法器组合一维可变运动学有限元

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with finite element problems that require different formulations in different subregions of the problem domain. Attention is focused on a variable kinematic, one-dimensional, finite element formulation which was recently introduced by the first author. Finite elements with different order of expansion over the cross-section plane are employed in different regions of the 1D domain. Lagrange multipliers are used to "mix" different elements. Constraints are imposed on displacement variables at a number of points whose location over the cross-section is a parameter of the method. The number and the location of the connection points can be modified until convergence is reached. The method is first assessed by encompassing sample problems and then it is applied to analyze a number of structures which requires different formulations in different regions. Compact, thin-walled and bridge-like sections are considered to show the effectiveness of the methodology proposed as well as its advantages to solve practical problems.
机译:本文涉及有限元问题,这些问题在问题域的不同子区域中需要不同的提法。第一作者最近介绍了一种可变运动学,一维有限元公式。在一维区域的不同区域中采用在横截面上具有不同扩展顺序的有限元。拉格朗日乘数用于“混合”不同的元素。在位移变量的多个点上施加了约束,这些点在横截面上的位置是该方法的参数。可以修改连接点的数量和位置,直到达到收敛为止。首先通过涵盖样本问题评估该方法,然后将其应用于分析在不同区域需要不同配方的许多结构。紧凑,薄壁和类似桥梁的截面被认为可显示所提出方法的有效性以及解决实际问题的优势。

著录项

  • 来源
    《Computers & Structures》 |2013年第12期|194-206|共13页
  • 作者单位

    Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy,King Abdulaziz University, Jeddah, Saudi Arabia;

    Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;

    Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Global/local analysis; Variable kinematic models; Lagrange multipliers; Finite elements; Refined beam theories; Unified Formulation;

    机译:全球/本地分析;可变运动学模型;拉格朗日乘数;有限元;精束理论;统一配方;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号