首页> 外文期刊>Computers & Structures >Quasi-harmonic Bezier approximation of minimal surfaces for finding forms of structural membranes
【24h】

Quasi-harmonic Bezier approximation of minimal surfaces for finding forms of structural membranes

机译:最小曲面的拟谐贝塞尔近似,用于寻找结构膜的形式

获取原文
获取原文并翻译 | 示例

摘要

Numerical approximation of minimal surface is an important problem in form-finding of structural membranes. In this paper, we present a novel approach to construct minimal surface from a given boundary by quasi-harmonic Bezier approximation. A new energy functional called quasi-harmonic energy functional is proposed as the objective function to obtain the quasi-harmonic Bezier surface from given boundaries. The quasi-harmonic mask is also proposed to generate approximate minimal surfaces by solving a sparse linear system. We propose a framework to construct multi-patch quasi-harmonic Bezier approximation from N-sided boundary curves. The efficiency of the proposed methods is illustrated by several modeling examples. (C) 2015 Elsevier Ltd. All rights
机译:最小表面的数值逼近是结构膜找形中的重要问题。在本文中,我们提出了一种通过准谐波贝塞尔近似从给定边界构造最小曲面的新颖方法。提出了一种新的称为准谐波能量函数的能量函数作为从给定边界获得准谐波贝塞尔曲面的目标函数。通过解决稀疏线性系统,还提出了拟谐波蒙版来生成近似最小表面。我们提出了一个框架,用于从N边边界曲线构造多面点准谐波Bezier逼近。几个建模实例说明了所提出方法的效率。 (C)2015 Elsevier Ltd.版权所有

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号