首页> 外文期刊>Computers & Structures >Hybrid geometric-dissipative arc-length methods for the quasi-static analysis of delamination problems
【24h】

Hybrid geometric-dissipative arc-length methods for the quasi-static analysis of delamination problems

机译:混合几何耗散弧长方法用于分层问题的准静态分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a class of arc-length methods for the quasi-static analysis of problems involving material and geometric nonlinearities. A constraint equation accounting for geometric and dissipative requirements is adopted: the geometric part refers to the Riks and Crisfield equations, while the dissipative one refers to the dissipated energy. The approach allows for a continuous variation of the nature of the constraint, and a switch criterion is not needed to trace the elastic and the dissipative parts of the equilibrium paths. To illustrate the robustness and the efficiency of the methods, three examples involving geometric and material nonlinearities are discussed. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文提出了一类弧长方法,用于对涉及材料和几何非线性的问题进行准静态分析。采用考虑几何和耗散需求的约束方程:几何部分是指Riks和Crisfield方程,而耗散是指耗散能量。该方法允许约束性质的连续变化,并且不需要转换准则来追踪平衡路径的弹性和耗散部分。为了说明方法的鲁棒性和有效性,讨论了涉及几何和材料非线性的三个示例。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号