首页> 外文期刊>Computers & Security >Building Auto-Encoder Intrusion Detection System based on random forest feature selection
【24h】

Building Auto-Encoder Intrusion Detection System based on random forest feature selection

机译:基于随机林特征选择的构建自动编码器入侵检测系统

获取原文
获取原文并翻译 | 示例

摘要

Machine learning techniques have been widely used in intrusion detection for many years. However, these techniques are still suffer from lack of labeled dataset, heavy overhead and low accuracy. To improve classification accuracy and reduce training time, this paper proposes an effective deep learning method, namely AE-IDS (Auto-Encoder Intrusion Detection System) based on random forest algorithm. This method constructs the training set with feature selection and feature grouping. After training, the model can predict the results with auto-encoder, which greatly reduces the detection time and effectively improves the prediction accuracy. The experimental results show that the proposed method is superior to traditional machine learning based intrusion detection methods in terms of easy training, strong adaptability, and high detection accuracy.
机译:机器学习技术已广泛用于入侵检测多年。然而,这些技术仍然缺乏标记的数据集,繁重的开销和低精度。提高分类准确性和减少培训时间,本文提出了一种基于随机林算法的AE-ID(自动编码器入侵检测系统)的有效深度学习方法。此方法构造具有特征选择和特征分组的训练集。在训练之后,模型可以通过自动编码器预测结果,这大大减少了检测时间并有效地提高了预测精度。实验结果表明,该方法优于传统机器学习的入侵检测方法,方便训练,强大的适应性和高检测精度。

著录项

  • 来源
    《Computers & Security》 |2020年第8期|101851.1-101851.15|共15页
  • 作者单位

    Nanjing University of Posts and Telecommunications No.9 Wenyuan Road Nanjing Jiangsu China;

    Nanjing University of Posts and Telecommunications No.9 Wenyuan Road Nanjing Jiangsu China;

    University of Hong Kong Pokfulam Road Central and Western District Hong Kong China;

    Nanjing University of Posts and Telecommunications No.9 Wenyuan Road Nanjing Jiangsu China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Network security; Network Intrusion Detection System; Deep learning; Auto-Encoder; Unsupervised clustering;

    机译:网络安全;网络入侵检测系统;深度学习;自动编码器;无人监督的聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号