首页> 外文期刊>Computer networks >Building an efficient intrusion detection system based on feature selection and ensemble classifier
【24h】

Building an efficient intrusion detection system based on feature selection and ensemble classifier

机译:基于特征选择和合奏分类的高效入侵检测系统

获取原文
获取原文并翻译 | 示例

摘要

Intrusion detection system (IDS) is one of extensively used techniques in a network topology to safeguard the integrity and availability of sensitive assets in the protected systems. Although many supervised and unsupervised learning approaches from the field of machine learning have been used to increase the efficacy of IDSs, it is still a problem for existing intrusion detection algorithms to achieve good performance. First, lots of redundant and irrelevant data in high-dimensional datasets interfere with the classification process of an IDS. Second, an individual classifier may not perform well in the detection of each type of attacks. Third, many models are built for stale datasets, making them less adaptable for novel attacks. Thus, we propose a new intrusion detection framework in this paper, and this framework is based on the feature selection and ensemble learning techniques. In the first step, a heuristic algorithm called CFS-BA is proposed for dimensionality reduction, which selects the optimal subset based on the correlation between features. Then, we introduce an ensemble approach that combines C4.5, Random Forest (RF), and Forest by Penalizing Attributes (Forest PA) algorithms. Finally, voting technique is used to combine the probability distributions of the base learners for attack recognition. The experimental results, using NSL-KDD, AWID, and CIC-IDS2017 datasets, reveal that the proposed CFS-BA-Ensemble method is able to exhibit better performance than other related and state of the art approaches under several metrics.
机译:入侵检测系统(IDS)是网络拓扑中的广泛使用技术之一,以保护受保护系统中敏感资产的完整性和可用性。虽然来自机器学习领域的许多监督和无监督的学习方法已被用于提高IDS的功效,但是现有的入侵检测算法仍然是实现良好性能的问题。首先,高维数据集中的许多冗余和无关数据会干扰ID的分类过程。其次,在检测每种类型的攻击时,单独的分类器可能无法均匀。第三,许多模型是为陈旧数据集而构建的,使它们不太适应新颖的攻击。因此,我们提出了一种新的本文的入侵检测框架,该框架基于特征选择和集合学习技术。在第一步中,提出了一种称为CFS-BA的启发式算法,用于维度降低,其基于特征之间的相关性选择最佳子集。然后,我们介绍了一种通过惩罚属性(Forest PA)算法来结合C4.5,随机森林(RF)和森林的集合方法。最后,使用投票技术将基本学习者的概率分布结合起来进行攻击识别。实验结果,使用NSL-KDD,AWID和CIC-IDS2017数据集,揭示了所提出的CFS-BA-Ensemble方法能够在几个度量标准下的其他相关和最先进的方法表现出更好的性能。

著录项

  • 来源
    《Computer networks》 |2020年第19期|107247.1-107247.17|共17页
  • 作者单位

    Southeast Univ Sch Cyber Sci & Engn Nanjing Peoples R China|Minist Educ Key Lab Comp Network & Informat Integrat Nanjing Peoples R China|Southeast Univ Jiangsu Prov Key Lab Comp Network Technol Nanjing Peoples R China;

    Southeast Univ Sch Cyber Sci & Engn Nanjing Peoples R China|Minist Educ Key Lab Comp Network & Informat Integrat Nanjing Peoples R China|Southeast Univ Jiangsu Prov Key Lab Comp Network Technol Nanjing Peoples R China;

    Southeast Univ Sch Cyber Sci & Engn Nanjing Peoples R China|Natl Key Lab Sci & Technol Informat Syst Secur Beijing Peoples R China;

    Southeast Univ Sch Cyber Sci & Engn Nanjing Peoples R China|Minist Educ Key Lab Comp Network & Informat Integrat Nanjing Peoples R China|Southeast Univ Jiangsu Prov Key Lab Comp Network Technol Nanjing Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cyber security; Intrusion detection system; Data mining; Feature selection; Ensemble classifier;

    机译:网络安全;入侵检测系统;数据挖掘;特征选择;合奏分类器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号