首页> 外文期刊>Computers & Security >Semantic diversity: Privacy considering distance between values of sensitive attribute
【24h】

Semantic diversity: Privacy considering distance between values of sensitive attribute

机译:语义多样性:考虑敏感属性值之间的距离的隐私

获取原文
获取原文并翻译 | 示例

摘要

A database that contains personal information and is collected by crowdsensing can be used for various purposes. Therefore, database holders may want to share their databases with other organizations. However, since a database contains information about individuals, database recipients must take privacy concerns into consideration. One of the mainstream privacy protection indicators, l-diversity, guarantees that the probability of identifying a sensitive attribute value of an individual in a database is less than 1/l. However, when there are several semantically similar values in the sensitive attribute, there is a possibility that actual diversity is not satisfied, even if anonymization is performed to satisfy l-diversity. For example, an attacker may know that candidates of Alice's disease are a set of HIV-1(M), HIV-1(N), and HIV-2 if the anonymized database satisfies 3-diversity. In this case, the attacker can conclude that Alice has HIV, although the detailed type remains unknown. In this research, to solve how actual diversity cannot be taken into consideration with existing l-diversity, we proposed a novel privacy indicator, (l, d)-semantic diversity, and an algorithm that anonymizes a database to satisfy (l, d)-semantic diversity. We also proposed an analysis algorithm that is suitable for the proposed anonymizing algorithm because the output of the anonymizing algorithm is difficult to understand. Our proposed algorithms were experimentally evaluated using synthetic and real datasets.
机译:包含个人信息并由人群收集的数据库可用于各种目的。因此,数据库持有者可能希望与其他组织共享数据库。但是,由于数据库包含有关个人的信息,因此数据库收件人必须考虑隐私问题。其中一个主流隐私保护指标,L-多样性,保证识别数据库中个人敏感属性值的概率小于1 / L。然而,当敏感属性中存在若干语义上类似的值时,即使执行匿名化以满足L-分集,也可能不满足实际分集。例如,攻击者可能知道,如果匿名数据库满足3多样性,则Alice病的候选者是一组HIV-1(m),HIV-1(n)和HIV-2。在这种情况下,攻击者可以得出结论,Alice患有艾滋病毒,尽管详细类型仍然未知。在这项研究中,为了解决现有的L-多样性无法考虑实际多样性,我们提出了一种小说隐私指标,(L,D) - 孤地性多样性,以及匿名数据库满足的算法(L,D) - 大西洋多样性。我们还提出了一种适用于所提出的匿名算法的分析算法,因为难以理解的匿名算法的输出。我们的建议算法使用合成和实际数据集进行了实验评估。

著录项

  • 来源
    《Computers & Security》 |2020年第7期|101823.1-101823.17|共17页
  • 作者单位

    Graduate School of Informatics and Engineering The University of Electro-Communications Tokyo Japan;

    Graduate School of Informatics and Engineering The University of Electro-Communications Tokyo Japan JST PRESTO Kawaguchi Saitama Japan;

    Graduate School of Informatics and Engineering The University of Electro-Communications Tokyo Japan;

    Graduate School of Informatics and Engineering The University of Electro-Communications Tokyo Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computer security; Privacy preserving data publishing; Anonymity; l-diversity;

    机译:计算机安全;隐私保留数据出版;匿名;l-多样性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号